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ABSTRACT

Micromechanical oscillators in the radio frequency (rf) range were fabricated in the form of silicon discs supported by a SiO,
pillar at the disc center. Effective spring constant of this oscillator can be controlled within the range Aff~10™ by a low
power laser beam, (Piyse~100 pW), focused at the periphery of the disc. Parametric amplification of the disc’s vibrations was
achieved through a double frequency modulation of the laser power. An amplitude gain of up to 30 was demonstrated, with
further increase limited by non-linear behavior and self-generation. Phase dependence, inherent in degenerate parametric
amplification, was also observed. Self-modulation of the CW laser beam (Pi,~100 uW ) provided by placing the disc
oscillator into a interference pattern setup can lead to parametric self-excitation.
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1. INTRODUCTION

The smaller — the faster: scaling down the dimensions of microelectromechanical systems (MEMS) into the micron
and submicron region shortens the response time down to nanoseconds. A bar clamped at both ends with dimensions
0.2x0.2x2 microns microfabricated from single-crystal silicon exhibits a resonant frequency of 380 MHz [1], extending the
area of MEMS applications into the ultra-high frequency (UHF) region. UHF MEMS devices are expected to replace bulky
and power-hungry elements in telecommunication devices, such as quartz oscillators, filters, frequency converters, etc. Since
process of MEMS fabrication is compatible with modern silicon technology, micromechanical devices can be the basis for
next generation UHF integrated circuits [2].

However, the way to transform an electrical signal into mechanical motion and vice versa represents one of the main
challenges in MEMS applications. In the most straightforward filter configuration a MEMS oscillators would be driven
electrostatically by an external voltage U, (signal from antenna), exhibiting mechanical vibrations when U, has a
resonating frequency component. Such an UHV mechanical vibration with nanometer amplitude must be converted back into
an electric signal for further processing. The high frequency of the mechanical motion practically excludes supersensitive but
slow detection methods, such as electron tunneling, used in accelerometery [3] or magnetometry{4]. Capacitive method [5]
and optical methods [1] are considered as the most suitable because of the fast response and high sensitivity. An optical
method employing a focused laser beam allows a design not overloaded by closely placed electrodes, and also provides
reduced cross-talk between driving and detection signals. Interferometric and beam-deflection techniques convert the
intensity variation of the reflected laser beam (caused by mechanical motion) into electrical signal with subsequent
amplification and measurement by an electric circuit. Being widely employed in force microscopy [6,7,8], optical detection
technique was also used to achieve a force resolution of 5.6x10"® N [9] and mass sensitivity of 10" g [10].

Laser wavelength puts a limit on the sensitivity of the interferometric method, making detection of nanometer
motion problematic. Signal processing (amplification in this case) on the mechanical level, provided before the mechanic-to-
electric conversion by an active UHF micromechanical components, can solve such a problem and is considered as a key
point for future MEMS devices.

Parametric amplification represents a means for “mechanical signal processing” in regards to MEMS oscillators.
The energy, necessary to gain mechanical motion is provided by periodic modulation of the oscillator’s parameter — effective
stifiness k [11]. Small mechanical vibrations, induced by a weak external force can be amplified by the parametric
mechanism and the enhanced vibrations will be detected optically. Since a “mechanical parametric preamplifier” can be
noise-free down to the quantum-mechanical level [12], it should greatly improve the signal-to-noise ratio of the resulting
signal. A mechanical oscillator embedded in a degenerate parametric amplification scheme is also fundamentally interesting
because mechanical squeezed states can be produced by such a system: the thermal vibration in one phase of the response can
be reduced below the thermal equilibrium level [13]. In MEMS oscillators, the only method that has demonstrated parametric
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between the oscillator and an additional, closely located capacitor plate [13,14,15].
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2. OSCILLATOR DESIGN
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clamping losses, could help to enhance the Q. Based on this consideration we have fabricated cylindrically-symmetric
oscillators as discs supported by a single pillar at the center point. By minimizing the diameter of the supporting rod one
should be able to reach the limit when such a structure is equivalent to a free disc. Commercially available silicon-on-
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microfabrication. Discs of radius R from 5 to 20 microns were defined by electron-beam lithography followed by a dry etch
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discs supported by the SiO2 pillars with diameter 6.7 microns.

Fig.1 (a) Electron micrograph of the disc oscillators; (b) schematic view and (c) optical image.
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MEMS oscillators. These oscillations resulted in the variation of the gap between the disc and the silicon substrate and were
detected by an interferometric technique with a He-Ne laser beam focused on the surface of the disc. All the measurements
were done at room temperature.
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Figure 3, (a) Relative shift in frequencies versus incident DC laser power. Experimental data (circles correspond to 866kHz
resonant peak, ﬁmgla-toﬂﬁklhm—m&kﬁzmddhmmds—tol.67MHz)mdwwntogaherwithlhelﬁts
(solid lines). Dotted line, dash and dash-dot lines represent the results of the FEM calculations for the frequency shifts of the
modes Yo » Yoo and Yo respectively. (b) Temperature field computed from finite element analysis. The model assumes 25%
absapﬁononGOpWDChsapwamaSmiamdimetaspontedgeofdisk. Contour line spacing is 0.1C. (c,d)
Two-dimensional stresses induced within the disc by the temperature distribution from Fig. 3b.
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the inner diameter constrained, i.e. the displacement equals zero. (This models the constraint effect that the oxide pillar has
on the Si disk.) One can solve this problem in two steps. First heat the cylinder and allow it to expand stress free. Then
nepﬁwmeﬁwldbeappﬁedtopuﬂlﬂ:eﬁm«dhmdabacktoitsstmihgdimmsim.'nﬁstmsiondliﬁsmcmonm
frequency of the disc vibration.
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Fig.2 (a) Modes of the disc bending yo; - (1), Yoo (2) and Y ~(3); (b) the corresponding resonant peaks of a disc (R=20um,
r=6.7um) vibrations.

Plate vibrations are described by the fourth-order differential equation [16]:

3p(1-5%) d*p
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where E is flexural modulus, s is Poisson’s ratio, pis the density of the material and h is half-thickness of the plate [14].
Possible solution of the equation (1) are given by the expressions:

Y(r,¢)=°sf_f(m¢)[u.0r)+31.0r)] @

Coefficients A, B and y,, are defined by choosing boundary conditions (displacement and first derivative should be zeroed
around the pillar while no bending or shearing forces exist on circumference of the disc). Figure 2a illustrated three modes of
vibrations corresponding to v;o, Yoo and ¥, marked as 1,2,3 respectively. For our structure (R=20um, r=6.7um), the highest
quality factor 11,000 was observed for the mode Yo, of the disc oscillations with a frequency of 0.89 MHz. Results presented
later in this paper are related to this particular resonance.

3. LIGHT-INDUCED STIFFNESS MODULATION

A low power laser beam (He-Ne, Pycyca~100uW) focused on the periphery of the disc was found to be an effective tool
to control the resonant frequency of the disc oscillator. Fig.3a demonstrates frequency shifts for all three modes shown on the
vibration spectrum (Fig.2b) as a function of the incident laser power. Modes Yo and y;o demonstrate linear increase of the
stiffness with the increased laser power, which is quite counterintuitive. At the same time, an expected decrease of the
resonant frequency (i.e. softening) was observed for the high-frequency mode 2.
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thermal stress. In this case the frequency of the first mode of vibration [15] is
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given by o = —aEAT , where a s the coefficient of thermal expansion, and AT is the temperature rise. Thus

12aATL

@ = 0y41- P

and the frequency shift due to heating of the beam is
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yielding (1/o)da/dT)=-0.002"°C.
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shift in a beam. Note that in a disk there are two components (radial and hoop) of thermal stress within the disc and that they
d:mgeinopposiﬁontoeadlo&ler.Soalthwghﬁxabeammcemonlydeaeaseﬁ'equenciabyhuﬁng.memboth
increase and decrease frequencies by heating the disk.

The frequencies, temperature and stress in the disk were computed using FEM analysis. The FEM solution modeled
both the Si disk and the oxide base. We assumed that both the temperature and displacement were zero at the bottom of the
oxide base. The model was meshed using 20 noded, three dimensional brick elements. Comparison of this model with a two
dimensional shell model showed that both gave almost identical results, thus a simpler modeling approach can also be used.
The computed temperature field for DC laser heating is shown in Fig.3b. For 260 pW power the maximum temperature rise
is 2.35C. Thetanpaahrealthejuncﬁonofﬂ:ediskandpillnrisl.l‘C,thusthetempaatmediﬂ'amcewossﬂ:ediskis
AT=1.25°C. Due to thermal expansion, stresses develop in disk as shown in Figure 3c,d. In the radial direction the stresses,
cﬂ,areprhnuilytmsﬂe,whﬂeintheboopdiecﬁagomisprhnaﬂympr&iva The tensile radial stresses increase the
frequency of modes with primarily radial bending. The compressive stresses decrease the frequency of modes with bending
in the hoop direction. Good agreement between the results of FEM calculations and experimental data is demonstrated in
Figure3a, where the modes yo; and Y00 (shapes are shown in Fig.2a) increase in frequency with increasing laser power, while
the frequency of the y,, mode decreases with increasing laser power.

€))

4. PARAMETRIC AMPLIFICATION

Modulation of the laser beam intensity can provide periodic change of the effective stiffness. Time-varying
parameter causes mixing of two different modes of vibrations (in a same way as non-linear circuit provides mixing of two
different modes of vibrations). That mixing allows energy supplied to the system at one frequency to be converted to another.
For the case of degenerate parametric amplifier the modes to be coupled are two counter-rotating ones. Providing pumping
frequency equal to the sum of the frequencies (which is a double frequency for the degenerate case) the pumping energy is
fed into vibration at the fundamental frequency. Deriving the expression for the gain of a degenerate parametric amplifier we
follow [11,13].

The equation of motion is:
d*x mw, dx
me+ Q° =+ [k, +k, Ok =F@) @)
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where x(t) is oscillator displacement, F(t) is an external driving force and a is the resonant frequency of the oscillator. It can
be changed into two uncoupled differential equations through the use of normal-mode approach described by Louisell [11].
Transformation is introduced:

1/2
a=-§+ia),'x; a =-§:——iwlx i=v-1 w=wo[(l—zé—2) +Elé]
The inverse transformations are:
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Substituting them into the equation of motion (4) leads to a first-order differential equation:

k,(®) a-a’ 0]

m o +o, m
If the driving force is applied in resonance F'(f) = F, cos(aX + @) and time-varied parameter £, is oscillated at twice the
resonant frequency k, = Aksin(2m,t), the last equation can yield the steady-state solution a(f) = Aexp(iax):

Ak . F, 1.
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For the oscillator with a high quality factor, Q, the relations @, + @, = 2@, and @, —@, ~ iw, /20 simplify equation
5):

A=F°Qwo[ cos(p) . sin(p) ]

+
k, |1+OAk/2k, = 1-Qak/2k,

If the oscillator motion in the original system of coordinate can be described as x(f) = X, cos@,f + X, sin @,?, then

X, =ImA4/w, and X, =Re A/ ,. The total amplitude is therefore given by
12

F,O| cos’p sin’g

x =20 " ©)
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The high quality factor of the oscillator implies that small energy losses due to internal friction, clamping losses, etc. could be
compensated by some low power external source of energy, leading to enhanced mechanical oscillations. Gain dependence
on the phase shift @ between stiffness modulation Ak(?) and driving force F(#), following from the equation is also obvious
from energetic consideration. In order to provide amplitude gain the increase of the stiffness Ak should occur around
maximum of deflection, thus contributing to potential energy E,=(k+Ak)x’.

In our experiment, synchronization of the stiffness modulation with the motion of the oscillator was achieved by

using the ac piezodrive voltage Vi, as a reference signal. Schematic diagram of the experiment is shown in Fig.4. An
external generator produces a double frequency ac voltage, phase locked with it. This voltage after amplification and phase
shift is used to control the electro-optical modulator (EOM), which, by partial modulation, provides the double-frequency ac
component of the intensity of the He-Ne laser beam focused on a < 5 micron spot on the surface of our disc oscillator.
With this parametric drive, a thirty times increase of the amplitude of the mechanical vibrations (Fig.4) was detected, when
the ac component of the laser beam was increased to 100 microWatt (the power absorbed by the disc can be estimated as 10-
15 microWatt). The corresponding width of the resonance peak becomes narrower by amplification, displaying an effective Q
of up to 65 000. With a fixed amplitude of the optical pump (fixed gain of the parametric amplification) the system
demonstrates linear mechanical response to the piezodriving voltage. The maximum observable gain is limited by the self-

306 Proc. SPIE Vol. 4408



SPECRUM EOM
ANALYZER

0 20 40 60 80
Prasern W Piezo drive

Figure 4 The parametric amplification gain versus amplitude of the laser power modulation. Experimental points are shown
by black circles. The solid line is a fit according to equation (6). Schematic diagram of the experiment is shown on the right.
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Fig.5 (a) Resonance curves obtained for different phase shifts ¢ of the optical pumping in respect to driving force. (b)
Amplitude of the resonant peak as a function of the phase shift ¢. Experimental results (black circles) are shown together
with theoretical fit (solid line)
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generation of the system. A critical parameter is the focus of the laser beam at the periphery of the disc to provide the best
conditions for amplification.

The effect of the phase shift, @, between the piezodrive and the optical pump is illustrated in fig.5a,b. The resonant
response for ¢=90° (maximum amplification) and ¢=0 are shown in fig3b. The suppression of the vibrations at a phase ¢=0 is
clearly seen. The amplitude of oscillation as a function of the phase shift ¢, shown in fig.5b was fitted by the theoretical
expression that follows from equation (6). Excellent agreement between experimental data (black circles) and the theoretical
prediction (solid line) was found.

Consistency between self-generation power threshold calculated from equation (6) for known Ak(Pi,.) dependence (see
Fig. 3a) and experimental data Pereaos~90uW (Fig.4) proves that heat absorption and thermal stress-induced stiffness
modulation are the dominant mechanisms by which the laser beam interacts with the oscillator. Temperature-induced strain
could be also accompanied by the stress created by photo-generated carriers [5,6]. This photo-induced stress in MEMS
oscillator can be considered as another way to provide parametric amplification at high frequencies and low light intensity.
By optimizing the laser wavelength and using a multilayer design for the oscillator one can significantly reduce the necessary
laser power. These experiments are presently in progress.

S. SELF-GENERATION
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Fig.6 Spectrum of the disc oscillations excited by CW He-Ne laser beam Pio.=300uW. No piezodrive involved in
experiment. Insert shows oscillogram of the signal from the photodetector.

Periodic modulation of the laser beam necessary to provide time-varying stiffness of the oscillator, was achieved by an
external electro-optical modulator in the experiment described in section 4. However, the disc is part of an interferometric
device, the gap between the disc and substrate affects the light intensity within the cross section of the disc (and hence —
absorbed heating power) by changing interference conditions for reflected beams. Oscillation of the disc (initiated thermally
for example) can cause modulation of the local disc heating even for CW laser beam. Non-linear dependence of the heating
power versus gap value provides the presence of the second harmonic, necessary for parametric amplification. Phase shift
between original mechanical vibrations and light modulation depends on the initial position of the disc within interferometric
fringes. If starting conditions and laser beam intensity are chosen properly — self-amplification up to generation will occur.
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Fig.6 shows spectrum of self-generated vibration stimulated by 300 uW CW laser beam (piezo drive is OFF). Generation is
observed at the frequency corresponding to mode 2 in Fig.2. Dimples on the signal from photo detector (insert in Fig.6),
which can also be seen as a strong second harmonic on vibration spectrum show that amplitude of oscillation is wide enough
to hit next interferometric fringe.

To our best knowledge this is the first observation of parametric self-excitation in MEMS oscillators. Parametric
mechanism makes our system different from optically-induced self-generation observed in bimorph MEMS oscillators
[18,19]. Quality factor of a parametric generator and exact conditions for self generation are the subjects of our current
research.

6. CONCLUSION

Parametric amplification with optical pumping was realized for radio frequency MEMS oscillator. A gain of 30 and
effective quality factor Q=65,000 are demonstrated. Incorporation of parametric amplification into a signal processing for
UHF MEMS devices is considered as a main goal. More generally, the parametrical amplification, described in this paper is a
method to be used when small mechanical vibrations need to be detected. An enhanced quality factor and amplitude-phase
dependence of a light-driven oscillator can be utilized for filtering, or when precise measurements of the frequency are
necessary (for example, mass detection experiments). Parametric self-excitation of the MEMS oscillator by CW laser beam
was demonstrated for the first time.
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