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In this review we describe theoretical and experimental investigations of
general slip phenomena in context with the flow of the quantum liquids °He,
“He and their mixtures at low temperatures. The phenomenon of slip is
related to a boundary effect. It occurs when sufficiently dilute gases flow
along the wall of an experimental cell. A fluid is said to exhibit slip when the
Sfluid velocity at the wall is not equal to the wall’s velocity. Such a situation
occurs whenever the wall reflects the fluid particles in a specular-like manner,
and/or if the fluid is describable in terms of a dilute ordinary gas ( classical
Sfluid) or a dilute gas of thermal excitations (quantum fluid). The slip effect
in quantum fluids is discussed theoretically on the basis of generalized
Landau—Boltzmann transport equations and generalized to apply to a regime
of ballistic motion of the quasiparticles in the fluid. The central result is that
the transport coefficient of bulk shear viscosity, which typically enters in the
Poiseuille flow resistance and the transverse acoustic impedance, has to be
replaced by geometry dependent effective viscosity, which depends on the
details of the interaction of the fluid particles with the cell walls. The
theoretical results are compared with various experimental data obtained in
different geometries and for both Bose and Fermi quantum fluids. Good
agreement between experiment and theory is found particularly in the case of
pure normal and superfluid *He, with discrepancies probably arising because
of deficiencies in characterization of the experimental surfaces.

1. INTRODUCTION

Slip is a boundary effect in the hydrodynamic flow of fluids, i.e. liquids
or gases, that occurs at the border between its microscopic and mesoscopic
or macroscopic description. In order to make this explicit we start with a
conventional description of hydrodynamic fluid flow by specifying the mass
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2 Dietrich Einzel and Jeevak M. Parpia

density p and the transport coefficient of shear viscosity 7. In a typical
experimental arrangement that aims at the determination of the shear
viscosity, one measures the damping and the period shift of a torsional
oscillator due to the presence of the fluid, which is entrained in a flow
channel of width d, oscillating at a frequency w with a velocity v**". If such
an oscillator performs a purely transverse motion, the walls of the cell exert
a shear force on a fluid layer with a typical thickness d(w) = (25/pw)'/?, the
viscous penetration or skin depth. The lengths d and J characterize the
bulk features of the experimental arrangement.

The dynamic regimes of fluid motion can be classified according to the
ratio of the viscous skin depth J and the size d of the measuring cell:

(i) If 6> d the fluid is clamped in the flow channel and may at most
exhibit a macroscopic velocity field with parabolic profile. Therefore this
regime is referred to as the clamped or Poiseuille flow regime. The cross
sectional average of the velocity field relative to the walls is known to be
directly related to the inverse bulk shear viscosity # via Hagen—Poiseuille’s
law'

5
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(ii) In the opposite limit J <d, the so-called open regime, the sur-
faces of the measuring cell drag along only a fluid layer of thickness é. In
this case one measures the complex transverse surface impedance Z ,(w),
which is defined as the ratio of the shear stress I, at the surface and the
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boundary velocity v
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v

As can be seen from (1) and (2), both types of experiments allow for the
determination of the shear viscosity 7. This determination is obscured,
however, by a phenomenon which typically occurs in the dilute limit of
classical gases and at low temperatures in quantum fluids and which is
referred to as the velocity slip effect.

The phenomenon of slip.sets in when the fluid acquires the capability
of sliding along walls. The importance of slip can be physically expressed
in a new length ¢, the so called slip length, which in general depends on
temperature and the details of the momentum exchange between the fluid
particles and the wall. The slip length is the distance at which the velocity
field, if extrapolated into the wall, vanishes. In context with phenomeno-
logical hydrodynamical theory it is commonly introduced by relating the
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Stip in Quantum Fluids 3

component v, of the macroscopic fluid velocity field along the surface
tangent at the wall and its spatial derivative v/, normal to the surface in a
boundary condition?

v, (wall) ={,Vv' (wall) (3)

We shall demonstrate in Sec. 4, that the slip length is of the order of the
(viscous) transport mean free path 4, of the fluid particles.

CO = aj‘r] (4)

Hence, if the fluid can be made more and more dilute, a so-called Knudsen
layer with a finite thickness of the order of the viscous mean free path 4,,
is formed near the walls. The fluid particles move essentially ballistically in
the Knudsen layer. The flow channel then effectively becomes wider which
in turn allows the fluid to slip and move with nonvanishing velocity at the
wall. In Eq. (4) a is the so-called slip coefficient, which is defined as the
ratio of the slip length to the viscous mean free path. In general a contains
the information about the interaction of the fluid particles with the wall.
For a classical Maxwell-Boltzmann gas and diffuse scattering at the wall
ay=1.126,* whereas for a Fermi liquid a4=0.819,” to give only two
examples for the case of diffuse scattering of fluid particles off a flat surface.
The importance of slip can be measured by introducing the so-called
Knudsen number Kn=4,/d. In a strict hydrodynamic description one
would treat the slip length as the smallest length in the problem and
neglect it, Kn=0, which leads to v, =0 as the standard hydrodynamic
boundary condition. In this sense Eq. (3) is a first order correction to
hydrodynamics with respect to an expansion in small ratios {,/d or {,/o.
This is, however, not the general case. If a fraction 0 <s<1 of fluid par-
ticles undergoes specular reflection at the surface, the slip coefficient can be
shown to be enhanced with respect to its value for diffuse scattering

l+s
] —s

a(s)=a

(5)
the enhancement being described by a phenomenological specularity coef-
ficient s.

From this we may conclude that the phenomenon of slip occurs in two
distinct situations:

(i) When fluids can be made more and more dilute. Examples are
dilute classical gases such as air, carbon dioxide or hydrogen, or dilute
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gases of thermal excitations in quantum liquids in the extreme low tem-
perature limit such as phonons and rotons in superfluid “He (He-II) or
Landau- and Bogoliubov quasiparticles in normal and superfluid *He.

(i) When the walls act more and more as mirrors, ie., when they
scatter the fluid particles in a specular-like manner. An example is liquid
3He in a vessel covered with a superfluid “He film.

The slip effect will be shown below to affect Hagen—Poiseuille’s law
(Eq. (1)) in that the bulk shear viscosity # gets replaced by an effective
VISCOSity 7eq. 7er depends explicitly on the size and geometry of the
measuring cell and, as will turn out later, on the details of the fluid—particle-
wall scattering process:

pd* , d

(vy = (—iw) v '7eﬂ"=’7d+cc’
0

(6)

As a consequence of fluid slip, the effective viscosity 7. is, in general, smaller
than the bulk viscosity . The quantity ¢ depends on the geometry of the
flow channel (¢ =4 and 6 for cylinders and parallel plates, respectively).

The complex transverse surface impedance Z, (w) (cf Eq. (2))? is
affected by slip effects in that the bulk viscous penetration depth changes
into an effective (and in general larger) length, which in turn can be
expressed by two effective viscosities 7, and 7.4

ZJ_(C())':R—IX_ l—l /pw”leff lpw”’eff
+(1 —I)Co

(14+2(20/6))?
Tt = T+ 2(60/0) + 20000 1 T =11 2(0,/9) +z(co/6>]

(7)

The traditional picture of fluid flow with slip developed so far involves
effective viscosities only: 7. for the case of Poiseuille flow and 7.5, 7
for the case of the transverse surface impedance, as corrected for the slip
length {,, which is calculated from microscopic theory. In the framework
of such a theory, all slip effects vanish in the hydrodynamic (low frequency,
high temperature) limit. They enter as a first order correction for small but
finite Knudsen number Kn. If Kn > 1, the slip description is no longer ade-
quate and has to be generalized to one that includes all orders in Kn.

In classical gases, it was found already in 1875 by Kundt and Warburg®
that experiments on oscillating discs could be interpreted correctly only
if one assumed that the gas “slips” at the wall. In 1879 Maxwell’ put
forward a kinetic slip theory in which, for the first time, the slip length was
related in an approximate way to the mean free path. The slip boundary
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condition was used extensively during the development of vacuum tech-
nology in the following decades. Knudsen and his collaborators® realized
that the slip boundary condition, which introduces slip only as a first order
correction to hydrodynamics, does not adequately describe the flow of a
rarefied gas when the bulk mean free path becomes comparable or con-
siderably larger than the typical dimensions of the vessel in which the flow
takes place. Considerable effort was spent in developing more accurate
descriptions of the slip phenomenon and the fluid flow of rarefied classical
gases. Starting from a model Boltzmann equation and imposing a simple
surface scattering boundary condition (such as for purely diffuse scattering),
the integral equation for the flow velocity of a rarefied Boltzmann gas was
derived® and solved approximately or numerically for certain geometrically
simple types of flow such as Couette and plane Poiseuille flow. The integral
equation for the slip length, in particular, was analyzed by Welander' and
used by Willis* and Albertoni et al.'' to derive the numerical value of the
slip coefficient a for a classical Boltzmann gas.

The class of systems which is of particular interest for us is that of
liquid helium with its isotopes ‘He (Fermi liquid) and *He (Bose liquid).
For these systems, complicated vacuum techniques are not required in
order to observe dilute gas behavior because at low temperatures the
transport properties of liquid helium are those of a rarefied gas of thermal
excitations or quasiparticles, obeying quantum statistics.

Generally speaking, the problem of mean free path effects in quantum
liquids has received less attention, despite considerable effort that has been
devoted to the transport properties, especially shear viscosity of liquid
“He and *He. Most experiments in the past have been performed in the
regime of low Knudsen numbers. But with lower and lower temperatures
becoming available, the effects of boundaries on the flow properties of the
helium liquids became increasingly important.

We will demonstrate that in liquid helium the elementary excitations
become a dilute gas at low temperature and their the mean free path may
be increased in nearly all cases by decreasing the temperature. One can
then always reach a regime in which mean free path or finite size effects
become important by just lowering the temperature. This is, of course, not
always a simple problem to achieve from the cryotechnical point of view,
particularly in the case of liquid *He with the Fermi liquid behavior setting
in only well below about 100 mK, and where superfluidity occurs in the
region below a few mK. Therefore finite size effects in the quantum super-
fluid 3He have been studied extensively and systematically only after the
early eighties.

In order to deal with quantum fluids such as *He and “He at low tem-
peratures, a generalized gas dynamics, applicable to any gas of thermal
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excitations that obey any statistics has to be developed. The presence of
boundaries will have to be incorporated via a general boundary condition
for the scattering of quasiparticles off the wall to ensure that the descrip-
tion is valid at arbitrary Knudsen numbers. The theoretical part of this
review deals with precisely this problem, where we focus on the description
of normal and superfluid *He and results for the “*He counterpart can be,
at least on the level of a phenomenological description, taken over from
these general results.

The review is organized as follows:

In Sec. 2 we summarize results for the shear viscosity associated with
elementary excitations from the normal and superfluid Fermi quantum
liquids *He and *He-B (Landau- and Bogoliubov quasiparticles) and
the superfluid Bose quantum liquid ‘He (phonons and rotons) on a
phenomenological basis. The discussion is restricted to quantum fluids in
an infinitely extended volume.

The Secs. 3—6 are devoted to readers interested in theoretical details of
the calculation of the bulk shear viscosity of an isotropic Fermi superfluid
and the extension of such a calculation to include finite size effects induced
by the surfaces of the experimental measuring cell.

In Sec. 3 we establish a quasiclassical description of an isotropic super-
fluid Fermi system starting from a microscopic Nambu-matrix kinetic
equation. The coefficient of bulk shear viscosity for Bogoliubov quasi-
particles emerges as a result of this section.

In Sec. 4 we explain why the presence of surfaces induces slip of the
fluid velocity whenever the excitation mean free path is finite. The leading
order slip correction to the hydrodynamic result for the viscosity is
calculated for the simplest law of diffuse boundary scattering. The
microscopic calculation of the slip length in Fermi quantum liquids is then
extended to incorporate a general class of wall boundary conditions which
include specular and backward scattering as well as Andreev scattering in
the case of a Fermi superfluid.

In Sec. 5 we discuss the experimental relevance of the slip effect in that
we derive and solve the phenomenological equations of hydrodynamic fluid
motion amended by a slip.boundary condition, which accounts for the
mean free path effect in first order only. This description is applied to
various experimentally relevant flow geometries.

In Sec. 6 the concept of slip, which only accounts for leading order
corrections in (,/d or {,/J, is generalized to arbitrary Knudsen numbers or
ratios of the mean free path and the viscous penetration depth. In order to
keep this discussion on a tractable level, we limit ourselves to two cases:
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(i) the “clamped” limit d <J, for which we discuss a microscopic
treatment of the problem of Poiseuille flow in a Fermi superfluid in a
parallel plate geometry. An expression for an effective viscosity, observable
in stationary Poiseuille flow experiments, Eq. (6), is generalized so that it
is valid at arbitrary Knudsen numbers.

(ii) the “open” limit d> J for which we discuss the problem of the
quantum superfluid bounded by a single oscillating plane. The result is the
transverse surface impedance for arbitrary ratios 4,/J of the mean free path
and the viscous penetration depth, which generalizes Eq. (7), so that it is
valid at arbitrary (/6.

Sections 7-10 deal with the experimental observations of the slip effect
in the *He and *He quantum liquids and their mixtures. Both the simple
slip effect, represented by Eqs. (6) and (7) as well as observable deviations
from it at finite and even large Knudsen numbers will be discussed.

Section 7 is concerned with experimental results that expose the effects
of finite mean free path on fluid flow in normal fluid “He at low tem-
peratures i.e. the slip effect of Landau quasiparticles. In Sec. 8 we treat the

comparison of theory and experiment for the superfluid B-phase of *He. In
~ this case, due to the constant energy gap in the excitation spectrum of
Bogoliubov quasiparticles, mean free path and Knudsen flow phenomena
are particularly pronounced.

Section 9 reviews the experimental situation in *He-*He mixtures and
in Sec. 10 we finally describe the experimental situation in pure *He, i.e. the
slip-related effects of phonon and roton excitations.

Section 11 is devoted to our summary and conclusions.

2. GAS-KINETIC DESCRIPTION OF ELEMENTARY EXCITATIONS
IN QUANTUM LIQUIDS

In this section we discuss the bulk shear viscosity associated with the
(dilute) gas of elementary excitations from the quantum Bose liquid *He
and Fermi liquid *He, which enters the expression for the Poiseuille flow
impedance (6) and the transverse surface impedance (7). We focus
primarily on the most important thermal excitations, namely the phonons
and rotons in *He, the Landau quasiparticles in normal *He and the
Bogoliubov quasiparticles in superfluid *He. Starting from their energy dis-
persion, we calculate the number and normal fluid densities, the mean free
paths and deduce a gas—kinetic expression for the bulk shear viscosity.

Let us begin with a description of the quantum liquid *He at below 4K.
Its superfluid phase (He-II) was discovered in 1924 by Heike Kamerlingh
Onnes.'? In context with our general aim we are interested in the properties
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of the thermal excitations from He-II, the phonons and the rotons. The
phonons characterize the low energy part of the spectrum ¢, of elementary
excitations:

£, =c, hk (8)

of the interacting Bose liquid, with ¢, the first sound velocity. The
Bose—FEinstein statistics of the *He atoms is reflected in the equilibrium
momentum (Planck) distribution function

1
0 —
nph(ak)_exP(gk/kBT)—l )

from which the mean number density N, of phonons

487 [ kg T \°
Y ,,0 _ 0T %s
Nph—gnph(ak) 5 <277.'h(,‘1> : (10)

can be deduced. The phonons contribute to the local mass current
g" = p"v" through their normal fluid mass density as follows:

_mkeT
27 ¢

n

Non (11)

A measure for the mean free path of the phonons is the quantity

1
P (1t o) + (1T,

(12)

Aoh = C1 Tphs T

Here 7, and 7, are the characteristic times for phonon-roton and phonon-
phonon collision processes, respectively.'” Finally, the phononic contribu-
tion to the bulk shear viscosity is given by the gas—kinetic expression

4

1 ] T
”phzgpghclAphZEkBT‘NPhTPh (13)

The phonons play a dominant role at temperatures below 0.6 K whereas for
T> 1K a second kind of excitation, the so-called rotons, become important.
They are characterized by the dispersion near the minimum of Landau’s
excitation spectrum:

h(k —ky)?

8k=A+ 2m

(14)
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with m, the effective roton mass, A the roton gap and Do = hk, the momen-
tum characterizing the minimum in the roton dispersion. The equilibrium
distribution of rotons n%e,) is of the form (9) with g, taken from (14). In
thermal equilibrium the number N, of rotons is given by

2p5 SmkgT
Ne= ni(e) = oo YRS o ~aka (15)
k

C(2r)? B

The roton mass current can be expressed by the roton contribution to the
normal fluid density

n
r

py/2m,
N
kT

2

The mean free path A, of rotons can be written as

kBT'
m

1|V, '
L1 Nk} (17)

1
.t hpg2m,
Here 7, is the root mean square roton velocity, t' is a collision rate as
obtained from elastic roton-roton scattering processes, with an amplitude
Vo, which specifies the interaction of the rotons. The rotons contribution
to the bulk shear viscosity is a constant due to compensation of exponen-
tial factors in the roton number density and the lifetime:

1 . 2 p? 2 h <p(2)/2mr>2
T e R T Z A7 (18)

The total bulk viscosity #'* of the system of thermal excitations (normal
component) from He-II is given by the sum of the phonon and roton
contributions

”:)tznph+”r (19)

Thus, in “He, there are two dilute gases which are responsible for momen-
tum transport. The roton contribution is essentially constant at tem-
peratures below about 0.8 of 7. since the number of rotons decreases
exponentially with temperature while their mean free path increases
exponentially, the two dependencies thus cancel one another, as can be
seen from Eq. (18) above. Thus the pure roton contribution to the viscosity
is a constant at low temperatures, as can be expected because the dominant
scattering mechanism of the rotons is by other rotons.
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The phonon contribution gives rise to an approximately exponential
increase in the viscosity at low temperatures. This happens because the flux
of phonons is mainly scattered by the heavier rotons. Since the phonon
number varies as a power law, and the rotons have an exponentially
increasing mean free path, the viscosity increases exponentially. The com-
bined behavior of the phonon and roton contributions to the viscosity is
summarized in Fig. 1 in which we show a plot of 7' vs. temperature. In
this figure, experimental determinations of the viscosity from capillary flow
can be compared to theoretical results corrected for slip at the walls. The
low temperature rise in the viscosity is due to the phononic contribution

tot

ton, .

22

Na (0P)

12 ]

| | L | | | | | |
12 14 16 18 20 72
T (°K)

Fig. 1. Viscosity of the normal component of superfluid He-II vs. temperature in K.
Shown are the data by Brewer and Edwards (Ref. 112) who measured capillary flow
in 52 um (@) and 107.6 um diameter capillaries (). Full line: viscosity corrected for
Slip.”2
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Next we turn to the Fermi liquid *He in its normal state. Near the
Fermi surface the quasiparticle excitation spectrum is given by

ee=pu+vEhlk—ke)=¢ +u (20)

with u the chemical potential, k¢ the Fermi wave number, v¥ =k /m* the
Fermi velocity and m* the (pressure dependent) effective mass of the
Landau quasiparticles.

The thermal equilibrium momentum distribution of the quasiparticles
is the Fermi-Dirac function

1
exp(¢u/ks T) +1

”12 = no(fk) =

(21)

from which the total number density follows as the sum
n=>y ny
ko

The number density n, of thermal excitations at finite temperature from the
Fermi system can be obtained from a Fermi-Dirac function n°(|¢|) in
which particle- and hole-like branches of the excitation spectrum are taken
to have positive energy:

kaT

n(T) =3 n(|&|)=3nIn2 (22)
ko H
The quasiparticle collision rate
2 2
1 I AW, S+ (nkaT) (23)

e (o T) 32k u

vanishes near the Fermi surface in the zero temperature limit. Here < W),
is the Fermi surface average of the dimensionless scattering cross section
for two—particle scattering. A measure of the quasiparticle mean free path
is given by

1
_Sfx Al i /Tk

3
=ZrN(O, T) (24)

A=VET, T

Here ¢, = —0dn% /3¢, is the derivative of the Fermi function and 7 oc T2
is the energy—average of the quasiparticle lifetime (23), which diverges in
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the limit of low temperatures as does the mean free path A. The shear
viscosity of normal liquid *He can be written as

1/ m* 1
f7=§<p ;) vﬂﬁgnppin (25)

Here A, is the viscous transport mean free path, which differs from the
quasiparticle mean free path 4 by (vertex) corrections of /=2 (stress
tensor) symmetry, as will be shown in Sec. 3. The shear viscosity of liquid
3He can thus become very large at low temperatures and eventually be
comparable to that of machine oil.

The transport coefficients for the viscosity of *He were calculated by
many groups'*'® using a variety of techniques. As it turns out, initial
theoretical estimates of the viscosity coefficient were about 75% of the
experimental values, but the pressure dependence of the viscosity was very
well reproduced. Finite temperature corrections'’ and fluctuation precur-
sors to the superfluid transition'® were also calculated. Very recently, there
have been measurements'® that show good agreement with the fluctuation
theory of Emery and these results will be discussed in Sec. 7. Finite tem-
perature effects (at least of the form predicted in Ref. 17) have not been
measured accurately in any experiment to date. '

Measurements of the viscosity of *He were carried out soon after *He
became available for research by Zinoveva,”® though the temperature range
was limited. The viscosity of *He in the normal phase below 0.1 K was
measured over a wide range of temperature by Abel, Anderson, and
Wheatley?' at low pressure. The probe they employed was the attenuation
of high frequency sound in the fluid. Similar measurements at higher tem-
peratures were carried out by Betts, Osborne, Welber, and Wilks.?? These
measurements agreed very well with one another and also with the next
series of results also at low pressure by Bertinat et al.** and Black, Hall,
and Thompson.** The viscosity at higher pressure was inferred from
zero sound attenuation measured by Paulson and others at La Jolla.”™
Measurements were also carried out at the melting pressure by Alvesalo
et al.?® and by the Cornell group.>” All of these measurements appeared to
follow a weakly pressure-dependent behavior. The pressure dependence
which was summarized in the review by Wheatley®® did not reproduce the
dependence calculated from theory. However, theory and experiment did
agree at low pressure. It was not until a single viscometer was used to
study the entire pressure range that the strongly pressure dependent
nature of the viscosity was measured by Parpia, Sandiford, Berthold, and
Reppy.2® 2 It is this result that agrees with pressure dependence predicted
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by theory with the exception that the experimental viscosity is always
greater than the calculated one by a factor of approximately 1.3.

Finally we turn to the discussion of a neutral pair-correlated superfluid
namely superfluid *He-B. This is one of the superfluid phases of liquid *He
which were discovered by Osheroff, Lee, and Richardson,*' and for which
they were awarded the 1996 Nobel Prize for Physics. In the superfluid
phase, the quasiparticle excitation spectrum

E =&+ AAL (26)

1s characterized by a pseudoisotropic gap matrix, first discussed by Balian
and Werthamer?>?

Ao, =NMT){Tit*}, , - R[h, 0]k (27)

Here the matrix R[f, 6] describes a rotation of the orbital relative to the
spin degrees of freedom of the order parameter and 7= {t¥, t*, 7} is the
vector formed with the Pauli spin matrices. From (27) one observes that
A.A} =A*(T) 1, therefore in this pairing state mean free path effects can be
expected to become particularly pronounced because of the constant gap
A(T) in the excitation spectrum. The second, so-called A-phase,** ** has an
energy gap A(k) of axial symmetry, with two point nodes on the Fermi sur-
face. This pairing state will not be considered further.
The equilibrium distribution of Bogoliubov quasiparticles reads

1
0 0
— ) = p)
v,=VvI(E,)= EkaT)+ 1 (28)

and can be used to compute the average number density of thermally
excited quasiparticles:

() T—'ﬂ

ko H

n(T)= lim Y (T) (29)
T-0

with Y (T') the lowest order quasiparticle Yosida function

=] (-2 |2

The mass current g"=p"v" of the Bogoliubov quasiparticles is charac-
terized by the normal fluid density (to be derived in Sec. 3)

(30)

L+ F/3
PTE(F3) Yo(T)

pN(T)= Y(T) (31)
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where F? is the Landau interaction parameter which describes the effective
mass enhancement m*/m =1+ F3/3 of the Fermi liquid. The quasiparticle
lifetime is complicated in structure and has been discussed in detail by
Einzel and coworkers.?’ Its energy dependence can be approximated in the
way shown in Appendix 1. Here we give only its asymptotic form in the
low temperature limit

po L1 3w kBTA3exp<_A>
7-07(Ey, T) tn(Te) /2n (ke T.)* ke T
1 3%k,TA
=TT (e T 15 1o D) G2

where w, = O(1) is a (only weakly pressure dependent) dimensionless scat-
tering parameter for superfluid *He-B. The mean free path of the Bogoliubov
quasiparticles can be constructed from the root mean square velocity V
and the energy averaged lifetime 7

[ & v eE)EED) v}
A= VT, V= > ;
f [%.. &, (—0v0/0E,)

e Yo(T)
[=.. dé(—8VY/OE,)[t(Ey)

(33)

The result for the shear viscosity of Bogoliubov quasiparticles can be
written similar to the result of kinetic theory for dilute gases (cf. Egs. (13)
and (18)):

n(T) =1Lpi Vi, =3snpe Yo(T) 4,(T) (34)

where p? = p(m*/m) Y, and A, is the viscous transport mean free path in
the superfluid B-phase. Like in the case of the roton viscosity, the viscosity
of the gas of Bogoliubov quasiparticles is seen to tend to a constant in the
low temperature limit due to a compensation of temperature dependent
factors p2 oc T~ 2 exp(—A/kgT), ¥V oc T"? and 4, exp(A/kgT):

_£7L<keTc
" 3w, \ A(0)

1 2 '
lim 7(T) =g mpeoktss s )rN(o,Tc) (35)

In Fig. 2 we show a plot of the viscosity of Bogoliubov quasiparticles vs.
reduced temperature, together with measured values of the viscosity taken
with a torsion pendulum and with a vibrating wire all calculated or
measured at 20 bar.
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Fig. 2. Normalized shear viscosity of ‘He~B at 20 bar pressure vs. reduced tem-
perature T/T,. Full line: Theory; (@) torsional oscillator data by Archie et al.;*'
() vibrating wire data by Carless er al.®' Neither set of experimental data has
been corrected for slip.

The viscosity of *He in the B phase near the transition temperature
was not measured directly till the work of Berthold et al.,*® though there
had been measurements of the heat flow from which the viscosity could be
inferred.’” The earliest measurements of the viscosity in the superfluid A
phase were carried out by Alvesalo and co-workers using a vibrating wire
at the meting curve pressure.*® The results of Berthold et al. showed that
the expected (1 — T/T.)'? dependence of the reduced viscosity, 1 —#/n., did
not hold until a region on the order of 103 of the reduced temperature.
The measurements of Parpia et al.*® extended over a larger pressure range
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and were able to approach the transition temperature much more closely.
These results showed that the reduced viscosity displayed a dominant
(1 — T/T.)"” dependence as predicted by theory® but had significant con-
tributions due to terms higher order in the gap.

All of these experiments also entered into the regime where a plateau
in the viscosity was predicted.** The vibrating wire experiments®® claimed
to have observed the predicted increase in viscosity towards zero tem-
perature, though this finding is most likely due to errors in the determina-
tion of the superfluid fraction. Subsequent measurements (for example
Archie and co-workers*!) in the B phase could not observe the minimum
in the viscosity. The resuits of the experiments were dominated by the long
mean free paths and exhibit the “droop” in the reduced viscosity at low
temperatures. This feature will be addressed in some detail in the text that
follows.

The situation in the quantum fluids with their dilute excitations and
long mean free paths at low temperatures is one in which the Knudsen
number can easily exceed unity. This is illustrated in the plot by Morishita
et al,®? Fig. 3, which summarizes the mean free path and the viscous
penetration depth in the quantum fluids down to 1 mK. The length scales

\ll‘ll!'

E
=
L
‘c; r‘oton\
o
o . \phonon
< e e - \oboes
. . wire diameter
c ~. \
o ~. -
2 ~\6\.4% saglution \
ETTAS
pure JHe "~ ~.. \
~. ~..
~. ~. \
. ~.
L Illlll 1 \ lll\l*.lll 1 1 llllll
=2 -1 0

10 10 10

Temperature [K]

Fig. 3. The mean free path plotted vs. temperature for various quantum fluids. The
smallest mean free path is that of pure *He, followed by the 6.4% solution. The roton
and phonon mean free paths are successively longer mean free paths in *He. The
vibrating wire diameter is shown for comparison to these lengths. The figure is taken
from Morishita et al.*>



Slip in Quantum Fluids 17

shown in the figure neatly span those which are most experimentally
accessible. They also compare these mean free paths to the diameter of
their vibrating wire viscometer. It is readily seen that at temperatures on
the order of 0.4 K in “He, the roton and phonon mean free path exceed the
wire diameter by orders of magnitude. Therefore *He is a stringent testing
ground for the understanding of Knudsen physics. For *He and mixtures
of *He and “He, the characteristic mean free paths can also grow to be
significant in comparison to the wire diameter at sufficiently low tem-
peratures. Thus, the need for corrections that account for finite mean free
paths is readily apparent, and the first of these corrections, namely slip, is
dealt with in Secs. 4 and 5 of this review. Other higher order correction
terms, which can be important in many experiments, can only be treated
numerically and are discussed in Sec. 6.

3. BULK VISCOSITY IN FERMI QUANTUM FLUIDS

The two fluid description of superfluid *He, which was derived in a
series of papers by Landau and Khalatnikov*® is now well established. For
the Fermion analogue, superfluid ‘He, this task has been performed much
more recently***® and we would like to devote this section to the descrip-
tion of its derivation.

In this section we describe a kinetic equation approach for calculating
the dynamics of pair-correlated Fermi superfluids with the majority of our
attention being focused on deriving the flow in restricted geometries from
the more generally known transport theory for bulk quantum fluids.

We consider an isotropic Fermi superfluid in which the fermionic
states are characterized by a momentum 7k, a parabolic energy dispersion
ee=u+¢&, =h’k?*2m* (with u the Fermi energy and m* the effective
mass), a density of states at the Fermi energy N =m*p./n*h> (both spin
projections), a group velocity v, =(1/h) V¢, an energy gap A,, which is
a nontrivial 2 x 2 matrix in spin space, and excitation energies E, = (&7 +
|A,]?)"2. In global thermodynamic equilibrium such a system is described
by a diagonal equilibrium phase space distribution function n?

ni=_crcey =upv(E) +vi[1 —=vUE)]1=1[1-¢,0,] (36)

with ®, = (1/2E,) tanh(E, /2ks T). v'(E,) is the Fermi function taken at the
Bogoliubov quasiparticle energy E, (cf. Eq. (28)) and u;=1i[1+¢&,/E,]
and v;=1[1—¢&,/E,] are the usual coherence factors. In a Fermi super-
fluid there exists in addition to the (diagonal) average, n%, the (off-
diagonal) average, g

g =<c ;0> =—A0, (37)
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The pair amplitude g, describes the structure of the off-diagonal long range
order present in the system. It turns out that the quantum-mechanical
coupling of the particle-like, hole-like and off-diagonal averages can be
conveniently described by combining these quantities into 2 x 2 matrices in
particle-hole space (ie. 4x4 matrices in particle-hole and spin space), the
so-called Nambu-matrices,*” which will be denoted, in what follows, with
an underbar:

ny 0 1
w=(ls 5 )=30-g00 (3)

Correspondingly, the normal state equilibrium quasiparticle energy ¢
together with its hole counterpart —¢&,, has to be amended by the off-
diagonal mean fields A,. These may be combined into an equilibrium

energy matrix g
S Ax >
g) = < (39

If the pairing interaction is denoted by V,, the self-consistency (or gap)
equation, by which the magnitude of the gap A(T) in Eq. (27), can be
determined, is of the form

Akzz Vkpgg (40)
P

We have already noted in Sec. 2 that we shall only be interested in solu-
tions of the gap equation (40) for the so-called pseudoisotropic Balian—
Werthamer state, cf. Eq. (27),%* believed to represent the superfluid B-phase
of liquid *He. It should be noted that for numerical calculations of the
temperature dependence of the gap for the BW state we have made use of

the following very accurate interpolation formula:

n [2AC/(T.,
A(T)=A(O)tanh{5—;£—c—N-<—f—l>} (41)

Here J..=A(0)/kgT. and AC/Cy are parameters (6,.=1.764.. and
AC/Cy =1426... in the weak coupling case), which describe the zero tem-
perature gap and the specific heat discontinuity, respectively. They may in
principle be taken from experiment, at least at higher pressures where the
weak coupling assumption fails.

Let us now turn to the case that a pair correlated Fermi liquid is
exposed to the action of external perturbations which vary in time and
space. If the variation in space of the external perturbations is of the form

o ———
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oc exp(iq-r), the nonequilibrium distribution function becomes a momen-
tum matrix n, ,(t)=n.q, t), where p=7#(k+q/2) and p' = Ak —q/2):

on 0
n, (1) =04, 1) =020, o +0n(q,1);  onlq, t)= <5gi _;:‘T k) (g, 1)

(42)

The quasiparticle energy changes accordingly:

oe oA
ey (1) =84, 1) =820, o+ +054(q, 1); 5§k(q,t)=< ’2 ’;)(q,t)

(43)

The evolution of the nonequilibrium matrix distribution function in time
and space is governed by a matrix-kinetic (von Neumann’s) equation®:

, 0 1 .
lh . np,p’(t) = —;l. Z [np.p"’ §p".p'] -+ l_Ip,p' (44)
»"

ot~

in which the full quasiparticle energy matrix ¢, , plays the role of the
Hamiltonian of the system. In (44) [, , represents the matrix collision
integral, which we will discuss later. If n, , is interpreted as a quantum-
mechanical Wigner distribution function (the diagonal element of which
describes the probability amplitude for the excitation of a particle-hole pair
with momenta p=~%(k+¢q/2) (particle) and p’' =4(k —q/2) (hole)), the
applicability of Eq. (44) extends to external perturbations with frequencies
w < E¢/h and wavevectors 7% |q| <pg. After linearizing, according to (42)
and (43), the matrix-kinetic equation reads

ih a% on(q, t) +On,es_ —gy, On, =0g.ny_ —ny, 08 +ihdl,  (45)

As a next step we perform an expansion of (45) with respect to #v, - q, by
which Planck’s constant % is eliminated to leading order. Introducing the
Nambu-matrices a'* =diag{1, —s}, the linearized form of the matrix
kinetic equation can be written in the long wavelength limit (harmonic
time dependence 0/0t - — iw assumed):

1
won (g, @) —q-Ve5 {a'*), On,(q, ) + D 08(q, @)} +

=i0l,(q, ) "“;‘ [§23 on,(q, w) + 0, 0e(q )] -+ --- (46)
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Here we have defined ®,= —0n0/0¢, =0, A;/Ei+ ¢, (7/E; and ¢, =
—0v?/OE,. The coupled equations for the diagonal and the off-diagonal
averages describe the dynamics of the superfluid in the whole quasiclassical
frequency range 0 <w < Eg/h. They have to be amended by the self con-
sistency equations for the diagonal energies (short range Fermi liquid
forces, cf. Ref. 49)

s

F ~
- LPik-p)on(g @) (47)
F po

{66,(q, )} 4, =de(q @)=Y
{

where the set F3 denotes the dimensionless spin-symmetric Fermi liquid
parameters. A second self-consistency relation holds for the off-diagonal
energy (gap equation)

{0ei(q, )} , _ =0A(q, w) =) V,,08,(q, ®) (43)

of the quasiparticle energy matrix Jd¢,. Equation (48) describes the collec-
tive modes of the amplitude and phase of the order parameter. It plays an
important role for the gauge invariance of the theory.

One important property of the collision integral in Nambu space
should be mentioned at this stage, namely that it has to reflect the conser-
vation properties of the pair-correlated Fermi liquid. Thus, there exists a
set of so-called collisional invariants 4,, with the conservation property™

22%“[4/\-5_1/\—]:0 (49)
k

that correspond to the conservation of mass (4,= ma' ™)), momentum
(4, =pa' "), and energy (4, =¢7).

We are now prepared to attack the problem of deriving conservation
laws for macroscopic observable densities from the matrix kinetic equation.
As a first step let us note that, as in the normal state, the diagonal part on,
of the distribution function can be classified according to its parity s with
respect to the parity operation k— —k. The diagonal elements of the -
matrix distribution function Jn, can be combined to scalar projections

on{ = tr[a'"0n, ] = 3[On + son_ ] (50)

Here tr denotes the trace over 2 x 2 matrices in particle-hole space. The
parity projected scalar distribution function Jn;” obeys a scalar kinetic
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equation which is reminiscent of the normal state Landau-Boltzmann—
Silin* equation:
(s o0 ! )
won?’ —q- v, | on', “’—fés}\, WV =0P¢ +Ztr4[gc“‘ oI, ] (51)
k

Here 0P} is a term, which vanishes for s = + 1 upon summation over k as
a consequence of the self-consistency relation (48), reflecting the gauge
invariance of the theory. The parity-projected kinetic Eq. (51) can now be
used to determine the macroscopic observable densities and currents and
their conservation properties. The mass density is defined as

dp=m) on, (52)
ka
Summing Eq. (51) on k generates the continuity equation:
wép—q-g=0 (53)
and a mass current density can be identified as

g=m) v[on, +D,J¢,] (54)
ka

The equation of motion for the mass current or momentum density is
known as the Navier Stokes equation:

wg;,—q;I1,=0 (55)

and we can identify as the stress tensor the quantity

I,=Y p,vi;[on,+ ®,d¢,] (56)
Ao

In order to proceed further, we restrict our considerations to the case of
purely transverse flow. That is, we assume from now on that the current g
only has a component in the x-direction and that spatial variations take
place only in the z-direction:

/g. 0

g={ 0 |; q=| 0 (57)
0 q:

In such a case the continuity Eq. (53) predicts that there are no mass
density fluctuations (Jdp =0) coupled to the transverse flow. The gauge
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mode, emerging as a solution of an integral equation for the quantity
SA{ ), is known to couple only to longitudinal degrees of freedom, such as
density fluctuations, and is therefore irrelevant in the case of purely trans-
verse flow.

A convenient short-hand notation for momentum sums will be used in
what follows:

<...>EZ... (58)

Doing the summations over momentum, we shall encounter the following
special averages:

<(D>—NF
E

The quantities Y,(7) represent the set of generalized Yosida functions
which describes the temperature dependence of the response functions and
which have already been introduced in Sec. 2 (cf. Eq. (30)). In Fig. 4 we
show a plot of the first five Yosida functions vs. reduced temperature.

The two relevant macroscopic observables describing the dynamics are
the mass current g,

(59)

> =NY(T)

g.=mlv.[on+Dde]) (60)
and the shear component of the stress tensor I1.,
.. ={p.v.[on+Dde]) (61)

As an important step towards the description of transverse flow of thermal
excitations we now have to decompose the distribution dn,, which deter-
mines the physical observables such as the density, current and stress
tensor into their quasiparticle and condensate contributions. This can be
achieved by performing a Bogoliubov—Valatin transformation which is
defined as the unitary transformation that diagonalizes the equilibrium
matrix energy:

-Uk§2_UZ=Ekg(+) (62)
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Fig. 4. The generalized Yosida functions Y,(T) (see Eqs. 30 and 59 in
the text) for isotropic pair-correlated superfluids in the weak coupling
limit as a function of reduced temperature T/T, for n=0, 1, 2, 3. 4.

where

U, A2

with u, = /(1 + & /E,)/2 and v, = (A, /|A.|) /(1 — & /E,)/2. The presence
of external perturbations induce a nonequilibrium quasiparticle distribu-
tion matrix:

ov, 0V, »
0, =U,dn, .y*,=< v i > (63)
p.p pY“sp.p ¥ p 57;,,,' —ovT

~p'.-p

The Bogoliubov transformation of the nonequilibrium quasiparticle energy
matrix is defined to have the matrix elements

SE,, oD

5Ep,p'=yp5§p.p'g;'=<5])*, —0E
p.p

p.r > (64)

-p.—p
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One may now perform a Bogoliubov transformation to the matrix kinetic
equation (45) by multiplying from the left with U, and from the right
with U, . After a subsequent expansion in small Av, - q one obtains the fol-
lowing set of coupled kinetic equations for the new distribution functions
ov, and 0y,:

WOV, — q.Vi-[6vi + 9 0E ] =01, o (65)
2E .
wéyk——i,l_k[a))k +0,0D, ] =01, _ (66)

In (65) V,.=0E,/ohk.= (L /E}) Uk: denotes the z-component of the
quasiparticle group velocity, which vanishes at the Fermi surface. We are
interested in solutions of these coupled kinetic equations (65) and (66) in
the so-called macroscopic limit, w <A(T)/h. An inspection of Eq. (66)
immediately shows that in this limit the distribution function Jy,, which
describes the Cooper pair response, has the local equilibrium form

5yk(q:9 Cl)) = _'@kaDk(q:’ Cl)) + 0 < hw hUF Iq| h > (67)

AT) MT) t,._MNT)"

where 7, _ is a relaxation time characterizing the off-diagonal component
61, _ of the transformed collision integral. Splitting off contributions of
the order O(hw/A) also in the quasiparticle kinetic equation (65) leaves us
with

5vk(q:’ CL)) = - qokéEk(q:’ Cl)) +hk(q:a CO)

ho hoglql AT,
+O<A( T AT’ A(T)"">

(Cl) - q: Vk:) hk(q:’ (’U) = w(pkéEk(q:’ CO) + lél: +(q:’ Cl))

(68)

Here the new quasiparticle distribution function A, = O(wt, Vi qTss---)
and 7,=1,, . is a time scale which specifies the diagonal component of the
collision integral; it will be"discussed in detail later. In the macroscopic
regime w <A(T)/h the quasiparticle distribution function év, has a local
equilibrium contribution v = — ¢, OE,, but, unlike the Cooper pair
part Jy,, it also has a contribution #,, which describes the deviation from
local equilibrium. We shall see below that the distribution function A,
exclusively describes the dynamics of the normal component in the macro-
scopic limit.
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We are now able to decompose the distribution function drn{* into its
quasiparticle and condensate contribution by writing

5n(,(‘Y)=%tr4[UkQC(S’y25Yk] (69)

A two fluid description of superfluid Fermi liquids emerges from (65)—(68) if
one associates the local contributions dvi’® and Jy, with the local condensate
response whereas the normal component is represented by the distribution
function h,. The normal-superfluid decomposition can then be summarized
- as follows: Defining distribution functions of definite parity through

1
ovy =5 [Ovi+sov_ ]
(70)

[07cA; +5Ak;]

5});:') —

2 |A]

one may decompose Jn}’’ and dg!’’ into

()= )
5gks p/‘\ qks 5?/(‘

Through the solutions of the pair of kinetic equations (65) and (66) one
‘may express ov and Jy by JE and 6D

5E(A:y) =< qf,\:\') pil\s)> 58(,\:3‘)) (72)
opy) "\ =pyr g Noay

where dg{”, D"’ and JA}’" have been defined in analogy to (70). The quan-

tities ¢¢’’ and p}{*’ are quasiparticle and pair coherence factors, respectively

92 () = (e oy =500, )

<1 _(Vk'q)z IAk|2>

2 E! 2E: E?
1 —s (Vk"I)Z |Akl2>

— 73
v <1 T (73)

PO q) = (W’u,\_+ Up + SO, Uy )?
q_.01+s|Ak|2'<1 (vk-q)zéi>
= = + 3> 3
2 E} 2E; Ej

I—S(Vk"Uz |Ak|2
2 4E,%, Ef
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They obey the following general sum rule:
g +pP =1  s==zx1

It is worth noting at this stage, that the off-diagonal energies dA{" represent
the contribution from the collective modes of the order parameter. These
can be split off into amplitude modes (JA{*’) with characteristic frequency
w, < A/h and phase modes (JA;™’) with characteristic frequency
w, o ¢-q, where ¢ is a typical sound or spin-wave velocity. The amplitude
modes are irrelevant in the macroscopic limit w <A/# which we are
primarily interested in. The phase mode, relevant for the transport of mass,
is the ordinary gauge- or Anderson-Bogoliubov mode, the treatment of
which is necessary to maintain gauge invariance of the theory.>! For our
purposes it is sufficient to note that

oA (g, w)=1i|A.] I4(q., @) (74)

with d¢ the phase of the nonequilibrium order parameter JA,. In context
with hydrodynamic flow, the phase d¢ may be interpreted to act as a
velocity potential for the superflow velocity v7:

. h h 00¢(z, w) |
vx(qz’ CO) - 2m lq25¢(qz’ Cl)) - zm | az (75)
In what follows we shall assume that the coupling of the transverse motion
of the walls to the condensate fraction is negligible and the superfluid com-
ponent is at rest, i.e. v* =0. The final result for the diagonal distribution
function on'"', needed to generate expressions for the density, current and

the stress tensor, reads then:
1 —
5n}j’+(Dkéa‘,j’=q§f’h}j’+——2—s(®k—qok) ogl ™) (76)

To solve the scalar kinetic equation for the diagonal distribution év, for
Bogoliubov quasiparticles, it is helpful to split the collision integral oI, into
an in-scattering contribution, characterized by the quasiparticle relaxation
time 7,, and an out-scattering contribution, characterized by the collision
operator B,,:

1
ol = —‘;'(hk—(ﬂkéck)Q 5Ck=Zkahp (77)

k po
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with B,, the collision operator for Bogoliubov quasiparticles representing
inelastic two-particle collisions, which will be specified later. Defining
zy=w+il, with ', =1/7,, we may rewrite the kinetic equation (68) for
A% in the following compact form

h = [(wm 9:Vi: OF~ s’} (78)

Zy

where JF, is a collection of collisional and Fermi liquid vertex corrections,
which guarantee an appropriate treatment of the conservation and relaxa-
tion properties together with the collective modes of the interacting Fermi
system:

5Fk = 5Ck — l'Cl)TkéEk
and =, is a response kernel

il z, ___ %% 1
Zi - (CI: Vk:)z 1 —iCl)Tk 1 “(iqz)'kz)z

[x]

k= Pk

with A, = V.1, /(1 —iwt,) a complex mean free path. If one recalls that ig.
corresponds to the gradient operator 0/0z in real space, one can interpret
Eq. (78) as the result of a straightforward gradient expansion

Pr 5F;<S)—iqz’lkzéF;<—S)

hs) =
it 1—(ig:A)?
Px D <5F“"—). é-éF‘ S’) (79)
l—zwrk k k * 9z

D, = z </1k. >2”

In order to proceed further, we have to specify both the quasiparticle
energy OE, describing Fermi liquid effects, and the quantity 6C, which is
the backscattering contribution of the collision integral. In the case of
transverse flow, the expansion of the Fermi liquid interaction (47), if
restricted to include only the Z =1, 2 components, assumes the simple form

2 Fs b,\\v“ I
%= L 7T dutod

(v v*~1on) (80)
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We may, with the aid of Eq. (76) express dn, through 4, with the result

g, = (FE/S) kavk:
“TLH(F3/5) (Dvind)

(Fi3) Y, o, e
L+ (F/3) Yo <O02) g =H (81)

<v.v,q‘+’h‘+’>

+

Using (81) we arrive at the following thermal excitation gas picture that
relates the observables g, and IT,. to the quasiparticle distribution func-
tions A{*) and A{7):

_,, L+Fi3
ST A (F ) ¥,

_ (1+Fi/3) Y,
(=)\ = pn n. n__ 1

(82)

This is the result (31) anticipated in the previous section. We can therefore
identify the normal velocity field from (82):

_Su AT (o

"(z 3
vz nY, nm*Y, (83)

The stress tensor is written as
H.(z)=<p V.h"*") (84)

This is the hydrodynamic result for velocity and stress tensor for the case
of purely transverse flow. A comprehensive review of the two-fluid descrip-
tion of the mass and spin dynamics of superfluid Fermi liquids has been
given by one of the authors.*

The quasiparticle energy change JE, can be written in terms of the
observables v7(z) and I1..(z) as

SEY

_1+s(F35) Y, p.’\.lk.- v\___+1—s (Fi/f) Y, put (85)
2 1+F3/5 {ppiV.A) 2 1+(F{/3) Y, ‘

Since we plan to consider the influence of surfaces on the flow properties
of the Fermi quantum fluids, we will be forced to use approximations for
the collisional contributions to 4{ in (78). We shall, in what follows,
make use of a relaxation time approximation, which is consistent with the
conservation of momentum of the Bogoliubov quasiparticles (scattering
parameter A, =1) and with the relaxation of the stress tensor on the scale
of the appropriate viscous transport time (pressure dependent scattering
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parameter 4, #1). In this approximation, the energy dependent relaxation
rate I', is replaced by its thermal average T

F-i-tel> (86)
T

Then the collision operator B, in 6C,={B,,h,), assumes the simple
form of a two relaxation time model®;

2 yiE 1 ] s — 1
1 + ( - 1 )# § U/\'.\‘l/k: prl’p:

B(S)=q(b‘)q(s) Z A“'
kp kK 1p 14 2202
/1:] 2 <¢U\U: >

and 0C, can be related to the observables vy and I1.. in a manner similar
to 0E,:

(87)

1+S pA‘.A“./\.__ 1‘_‘S

oC = 5 = t— A p.0"
C > A5 o VD IT..+ 5 Ay pu" (88)
Therefore
s . " 1 +S p\i ol 1 _S H
OF'Y = (1 —iwt) { 3 a2<¢pi VA__A:> I'I_\.:+—s—a,va_\}

1 { Y, . _(FSZ/S)Yz},,,:oi Y,

A.z"‘—_l

Yo U1+ FL5

1.’ N . - (Fi/3) YO ) — 0 -
I 0

We are now prepared to calculate the shear viscosity of a bulk Fermi
superfluid. The shear viscosity can be identified from the constitutive rela-
tion between the stress tensor and the gradient of the normal velocity field,
which is obtained from Eq. (84) as:

..(q9., w)= —n(q., w) iq.v"(q., w) (90)

with 7(q., w) the dynamic shear viscosity of our model which is given by

_(L—iw?) a S @p2 V. i/l = (ig.3)> w.~0 (1 — i) a,
| _ g SepiVA /(1 —ig.A.)°]) C1-a,
’ {opiV.i.

(";0 <§0p?; V:i:>
1 —4(Y,/Y,)

ngq-, ) CopiV.i)
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Fig. 5. Viscous mean free path of Bogoliubov quasiparticles
in *He-B at four different pressures vs. reduced temperature.

The latter equality in Eq. (91) corresponds to the stationary limit of the
leading order gradient expansion and leads to the final result for the shear
viscosity of Bogoliubov quasiparticles, which may be cast into the simple
form (34) reminiscent of gas-kinetic theory

| I _
'7(T)=§p3V/1,,; A=V,

g, [le¥D. o __ T
F <¢U§>’ T 1-41,/Y,

with ¥ a root mean square averaged velocity and 4, the viscous transport
mean free path. In Fig. 5 we show a plot of 4, for superfluid *He-B at dif-
ferent pressures vs. reduced temperature. This clearly shows that the bulk
result for # is only valid in a regime of temperatures where 4, is the
smallest length in the problem. This ceases to be the case at lower tem-
peratures where 1, diverges exponentially and exceeds typical sizes of the
measuring cell. In the next section we deal with the consequences of long
mean free paths.

(92)

4. THE SLIP EFFECT

In this section we aim at re-deriving the constitutive relation (90)
between the current and the gradient of the velocity field for the case in
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which the fluid is constrained to the half space z>0 and bounded by an
infinite plane wall at z =0, which is assumed to scatter quasiparticle excita-
tions in different ways ranging from diffuse to specular.

We start by rewriting Eq. (68) by changing over from the (g., w)—to
a (z, w)—representation:

1 0
<Ik_ +a> hz, @) =@, pqi(z, A42) (93)

L _oF, __ e, 1 .
pt}'k::l—lwf—<(pin:i:> A’k: o

qk(z, A’k:) =
This integro-differential equation can be formally inverted to read:
h(z)=e “*C, +¢.p. f dz q (2, A,.) e~ A (94)
0

Inside a layer of thickness oc 4, (the so-called Knudsen layer) where the
quasiparticles move essentially ballistically, the surface is capable of dis-
tinguishing incoming quasiparticle excitations (negative group velocities
V. <0) from those that are re-emitted (positive group velocities V,. > 0)
from it, at least if the reflection is not specular. To see this, we decompose
the distribution function 4,(z) into contributions from V,.<0 and V,.>0

hi(z, Vi) =h(2) O(= Vi) +h . (z) O(V,.) (95)

where © denotes the Heaviside step function. The unknown integration
constant C, 1s determined from the boundary conditions for 4, (z) at the
wall (z=0) and for A7(z) far away from the wall (z - «0). The latter
boundary condition then simply reads

P o = L

lim h(z)= lim {eﬂ"‘*:'c: + i, | dz g2, — i) e“—:'”'*kr'} =0
0
(96)

and reflects the simple fact that the presence of the wall is not felt at an
infinite distance away from it. A simple form for the boundary condition
for h7(0) at the wall is that of diffuse boundary scattering, where one
assumes that the quasiparticles leave the wall with the local equilibrium
distribution characterized by the wall velocity v<*:

he(0)=C7Z =g, p v (97)

Rd
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and will be extended later to apply to a class of more general wall scat-
tering laws. The formal solution to Eq. (93) for incoming and reflected
quasiparticles may be written as

hk>(z) = (pk p_\- {UiXte —(:/;”k:) + J\- dz’ qk(Z" A’k:) e(:' —:)/llk:}

0

(98)
hk<(Z) = —(pkpxj~ dz’' qk(Z', ""Mk:‘) e—(z’_:)/l;'k:|

Clearly the new physics introduced by the presence of the wall originates
from the distribution function A (0) in (98) which describes local equi-
librium with respect to the surface in contrast to the bulk distribution

representing the incoming excitations. Taking the moments according to
(83) and (84)

1
v(z) =— (0 h7 +hZ)) 4 (99)
nY,

M.={p,VAh™—h=)),

<"'>+= z

ko
V..>0

one arrives at coupled integral equations for this pair of observables which
we will discuss later. In order to make connection with the gradient expan-
sion presented in the previous section, we proceed by performing a partial
integration of the terms containing the normal velocity field v3(z):

he(z2) =@ P {al (z) — Ave ) + j: dz' G(z') e ‘:’f“'k:}

0
hi(z)=@rp. {anv,'l(z) — j "4 G(2) eﬂ:"”’““‘} (100)
a1l ..(z ovt
Gy =220 g Py

Av, =a,v"(0)— v
The quantity Av, represents the finite velocity difference of the relative
motion of the excitation gas and the plane surface, the so-called velocity-
slip. 1t will turn out to be of central importance for the discussion of mean
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free path effects to follow. Since G(z) oc 0v'(z)/0z, Eq. (100) becomes par-
ticularly simple if the velocity field profile is close to linear like in the case
of Couette flow which we will discuss later. In such a case one may carry
out the partial integration procedure repeatedly and obtain a gradient
expansion for the stress tensor IT ..

J~: dz' e(:’—:)/,i,\,:G(Z/) ='{k: Z (_ 1 )n /1;\1:[ G(n)(z) _ G(n)(o) e—(:,/).k:)]

0 n=

| , (101)
| e G =12 T 1Al 6(2)

- =0

H

Here G'")(z) denotes the n-th derivative of the function G(z) with respect
to the variable z. Evaluating IT . with (101) leads to moments of the
general form '

L(z)=<{pp V.42~ ", sgn(z)" ! (102)
Note that the ratios L, , /L, are of the order of the quasiparticle mean free

path. The result for IT _.(z) reads

Mo(z)= —L(z) Ao +2 Y Loy, 2(0) G(z)

n=0

- Z (=D"L, () G™(0) (103)

n=0

= —L(2) Av,+2L(0) G'(z) — Ly(z) G'*(0) + ---

Far away from the surface one recovers the bulk result (91) of the
preceding section:

ov?
M. (z~ 00) =2Ly(0) G"(2) = —n(e) S=(2)
a, a, 2
n(w) = 2L,(0)= 2op VA, (104)

l—az 1—612

In contrast to the calculation in Sec. 3, the gradient expansion involves, via
the boundary condition (97), the velocity gradient é(v"/0z)(0) cc G(0) as
well as the velocity slip Av,. Evaluating (103) at the surface (z=0) leads
to the condition

I1..(0) = L(0) G**(0) — L (0) Av, (105)
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which relates velocity slip Av, and velocity gradient. Av, may be estimated
by assuming stationary (o — 0) Couette flow with a linear velocity profile

v(z)=vY0)+ vz

Equating I1,.(z) = —nvY =T1_,(0) leads to Maxwell’s velocity slip bound-
ary condition’:

Av,=v*(0)— v = Cov?

_ 1 Ly(0) _ 1 {opiV.Az) o
1 —A,(Y,/Y,) L(0) 1-2x(Y,/Y,) <(Ppi V.«

(106)
Co

The quantity {, has the dimension of a length and can be interpreted as the
distance behind the wall, at which the velocity field extrapolates to zero. It
is therefore referred to as the slip length. Eq. (106) can be interpreted as a
surface boundary condition for the macroscopic velocity field v2(z) which
generalizes the well-known hydrodynamic “stick” boundary condition
v2(0) = v to include mean free path effects in leading order. With the
result (106) we have given a microscopic derivation of Eq. (3) in the intro-
duction. Figure 6 illustrates the shape of the (normal) fluid velocity profile
near a plane wall at z=0. It turns out that in a realistic situation the
velocity profile acquires a positive curvature within the Knudsen layer,
which is sketched in Fig. 6. Such profiles result, for example, from an
exact treatment of the transport equation in the case of diffuse boundary
scattering, for details of which we defer to Ref 5. We will make use
of Eq. (106) in Sec. 5 in context with the phenomenological description
of hydrodynamical fluid flow. Working out the integral on the rhs. of
Eq. (106), one finds in the hydrodynamic limit w7 —0 '

L0)_8 .Y
L(0) 157 Y,

Using the definition (92) one observes that in the hydrodynamic limit
wi— 0 the slip length scales with the viscous mean free path 4, of the
quasiparticles as stated in Eq. (4) of the introduction:

8 [Y,Y,
fo=aky;  a=157y?

(107)

Note that the form of the slip coefficient a in (107) is limited to the case
of diffuse boundary scattering.
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wall velz) liquid

Fig. 6. Velocity profile for the transverse flow of a (quasi-
particle) gas past a plane wall.

As a next step, the above calculation of the normal velocity slip length
Co is (i) generalized to a more general class of wall scattering events and
1s (ii) estimated in a more accurate fashion as compared to the simple
Maxwell treatment presented above. A form for the wall boundary condi-
tion (97) which is not restricted to the case of diffuse quasiparticle scattering
can be written down by relating incoming and outgoing quasiparticle partial
currents through a general elastic wall scattering probability W,,.:

|Vizl 6v (0)=2 Z Wi | Viez| 6v(0) (108)
o

Vi.<0

The quantity W, is the probability that a particle hitting the wall with
momentum #k’ leaves it in a quantum state sk. It represents a large class
of elastic wall scattering laws which are thought to be superimposed on the
diffuse scattering processes. W, is therefore assumed to have the property

Wkg%’, = Wkk‘é(Ek - Ek') ( 109)

Furthermore, we consider only the case when the scattering preserves
particle number. This can be expressed as a normalization condition

2 Z Wkk'zl (110)
k

Vi->0
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Finally, the global equilibrium distribution v must obey (110). A sufficient
condition for that is

Vi Wkk'v2’=IVk:I W_i vy for V,.>0; V<0 (111)

This is the reciprocity relation for boundary scattering (cf. Ref. 3). In the
case of purely diffuse boundary scattering, the wall scattering probability
W, is an azimuthally isotropic function of k and £’ which averages to zero
upon integration with the weight function p,, characteristic for transverse
flow. Special cases of elastic scattering events may include

(i) specular scattering
W/\'/\" =S5( V/\':— Vk':) 51‘*. K’ (112)

where s is a phenomenological specularity factor and k* is a vector with
components {k., k,, —k_}, and

(ii) elastic backward scattering
Wi =—ro(Vio— Vi) Oy i (113)

Here r is the corresponding backward scattering parameter. In pair
correlated Fermi liquids a further elastic scattering process of quantum-
mechanical origin is known to exist. It is called Andreev scattering®® or
particle-hole conversion and is caused by a reduction of the (triplet) order
parameter components near the boundary. This leads to a conversion of an
incoming Bogoliubov quasiparticle into a “retro-flected” hole-like excita-
tion which has all components of the group velocity reversed. The trans-
verse momentum, transferred to the wall in this process, however, is
negligibly small, eventually leading to a temperature dependent reduction
of the frictional force of the normal fluid component on the surface. For
a comprehensive review of Andreev scattering we refer to the work of
Kurkijarvi and Rainer.’* Near surfaces, the order parameter representing
the B-phase of superfluid *He splits into components parallel and perpen-
dicular with respect to the surface normal. These components have different
spatial gradients. However, for simplicity, we restrict the discussion to an
order parameter profile which drops from its bulk value to zero near the
surface. Such a step-like order parameter profile serves to provide an upper
bound for the estimate of Andreev scattering effects, because it leads to the
maximum possible reflection probability R(E;)”:

_E—JEI-A®
R(E,)= (114)

2 2

E.+E:—A
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The corresponding scattering probability W,,. reads in the case of
(ii1) Andreev scattering

Wi =R(E) (Vi + Vi) 0y (115)

Let us now aim at a derivation of coupled integral equations for the
observables v and II.. for the general set of boundary conditions (108)
which can also be wrltten in terms of the distribution functions 4. and A :

WVie-|

h(0)=@,p,v T2 Z Wi ——
|Vk:I

Vies <O

(A5 (0) =@ p' 0] (116)

In deriving expressions for the observables, one generates the moments
L,(z) (see Eq. (102)) of the mean free path 4,. which correspond to the dif-
fuse part of the scattering process, and new moments K, which account '
for elastic contributions:

mn(zs “ Z Z Pr Py p\ V/\ A';\”-_l}'"—l Wk—k’e—(:M:)—(:lukf) (117)
V. o Vi “ o
The integral equations for the observables v7 and II.. can, with the use of

(102) and (117) be written in the compact form:

Ly(0) v"(z) — a, f: dZ[L (|2 — =) = Kool2, )] 0°(2')

= [Lo(2) + Ka(z 0] 03 #3750 | d [ Lofz—2)
+ Ko (z,2")] I1..(2") (118)
= K (z,z)] 1.
M, (z)— 2L2(0)j dZ[L(|==|) + K (2, )]

=[Li()+Kulz 0] 6% +a, | d='[Lo(z — ') = Kou(z, 2')] 07(=

where the coefficients a, have been defined through relation (89). The
coupling of the observables v? and IT,. is described by the nonlocal integral
operators L,(|z—Zz'|) and K,,,(=. =) The treatment of the problem in Sec. 3
corresponds to the local limit Ak: —01in L, and X,,,, its generalization to
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finite mean free paths requires the full treatment represented by the system
of integral equations (118). We come now back to the case of stationary
Couette flow which is obtained as a special case (w7 — 0) from the second
of the coupled integral equations (113):

a n
() = —n(D) a2 = (1) o2 [ 1+ 9(2)] (19)

1 i ! /
= — L)+ K= 0] &=y 77 ), #LE(17=2D
ov'y(z')

+ K 1(z,2")] 57

Here y(z) =[dv"(z)/0z — v ]/vY >0 is a measure of the curvature of the
velocity profile. From (119) one may derive an integral equation for the
slip length £y = Av, /o™ + {5 dz ¥(z):

o {Ll(z) + K\(z, O)} - {Lz(z) — Kz, 0)}

= [ a2 W HILA) + K2 001 = [Li(12 = 2D + Kz 201} (120)

0

Now we put z = 0. Assuming the three expressions in curly brackets as well
as the quantity ¥(z) to be positive one may derive positive bounds for the
slip length ¢, from (120):

(i) lower bound (Maxwellian slip, ¥(z) =0):

w1 L(O—Ku0.0)
0 T T 2(2]Y,) L(0) + Ki(0,0)

(121)
Note that this is a generalization of the estimate (106) for the slip length
to include elastic wall scattering processes.

(i) From an integration of Eq. (120) over z from 0 to co one may
derive an upper bound:

oo L L(0)=Kx(0.0
0 ST A(Y2/Yg) Ly(0) + Kxi(0,0)

(122)



Slip in Quantum Fluids 39

(ii1) Finally it is possible to derive an improvéd lower bound for the
slip length:

ILB 1

>
P T I=Ay(Y,/Yy)

o [L2(0) — K5,(0, 0)1% + [ L1(0) + K10, 0) JLL(0) — K>5(0, 0)]
2L,(0)[ L,(0) + K,,(0, 0)]

(123)

These bounds have, for the case of diffuse scattering (K=0), first been
derived by Jensen et al.>> Let us discuss this special case first. Applying the
results (121)-(123) to the case of purely diffuse scattering, the slip length
of a normal Fermi liquid is bounded by

A, <lo<id,; {o>3[15+3]4,=0579..4, (124)

In a superfluid Fermi liquid the ratio of the slip length to the mean free
path varies slightly with temperature in the case of diffuse scattering as can
be seen from the (Maxwell) result for the lower bound (107) and which is
shown in part a) of Fig. 7 for *He-B at 20 bar pressure. The three bounds
(LB, UB, ILB, dashed lines) are shown together with the result of an exact
treatment (EX, full line).’

The improved lower bound for the slip length is seen to be an excellent
approximation in the case of diffuse scattering. It can be anticipated to

]0 T T T T 25 T T T 1 t 1 I T
b)
09 20} -
\ A
= 08 - 1
< B
= 07 WOF p B
:% 1B
06 - -
| | il ;‘i‘l L1 1 1 | 1 | 1
05 02 04 06 08 10 0O.I 0S 1.0
/T, /T,

Fig. 7. (a) Slip length {, of an isotropic Fermi superfluid, normalized to the viscous mean free -
path 4,. Dashed lines: bounds on the slip length; full line: exact result (see text). (b) Com-
parison of the slip lengths normalized to the viscous mean free path for the cases of diffuse
(D) and Andreev (A) scattering (step profile).



40 Dietrich Einzel and Jeevak M. Parpia

work as well in the more general case of additional elastic wall scattering
processes, which will now be discussed. Inserting the scattering prob-
abilities (112), (113) into the mean free path moments (118) one finds that

Kmn(z9 Z’)= —th+n—l(Z+Z,) (125)

where 7=s in the case of specular scattering and ¢= —r in the case of
elastic backward scattering. The lower bound for the slip length in these
cases has the form

1
5R() =480 1 (126)

and is hence seen to be enhanced for specular scattering and reduced for
elastic backscattering. The case of Andreev scattering in a Fermi superfluid
has to be discussed separately because the functions K,,.(z, Z') have to be
evaluated with the amplitude R(E,) for particle-hole conversion:

Kz, 2)=—{@p VA" 2R(E) e "), = =R,y i(2+7)
(127)

Inserting this into the result (121) for the Maxwellian slip length one finds
that Andreev scattering leads to an enhancement of the slip length over its
value for purely diffuse scattering:

1 + Ry(0)/L(0)

LB _ /LB
Lo (Ry=¢g (0)1—R1(0)/L,(0)

(128)

For the special case of a step-like order parameter profile near the wall
A(z)=A(T) &(z —z,) one may show from (128) that the ratio (§®(R)/
¢EB(0) diverges as oc T =12 in the low temperature limit. The temperature
dependence of the slip enhancement in the presence of Andreev scattering
over that for diffuse scattering is illustrated in part b) of Fig. 7. The
dramatic increase which is visible there has been termed the “quantum slip
effect” because it is the quantum-mechanical scattering of Bogoliubov
quasiparticles which is responsible for the loss of transverse momentum
transfer to the container walls.

Being aware of the fact that the length ¢, enters the description of fluid
flow as an additional temperature dependent parameter and being able to
compute it for various wall scattering probabilities, we now have to
investigate in detail where the slip length enters the hydrodynamic descrip-
tion of fluid flow as a finite size correction. This will be the topic of the next
section.
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S. PHENOMENOLOGICAL THEORY OF FLOW IN
RESTRICTED GEOMETRY

In this section we deal with the incorporation of experimental finite
size constraints on the determination of the shear viscosity. These con-
siderations will be restricted to certain classes of torsional oscillator and
sound propagation experiments which use a parallel plate geometry. The
treatment will be entirely on a phenomenological level. A phenomenologi-
cal treatment of mean free path effects, ie., the incorporation of the slip
length {, into the theory, can be achieved by postulating a boundary condi-
tion for the macroscopic velocity field v7 at the container wall, which
allows for velocity slip. Such a boundary condition is particularly simple in
the case of one ideally plane wall, located at z =0, which confines the fluid
to the half space z>0, as discussed in the previous section. For such a
geometry we obtain a simple slip boundary condition for transverse flow
(cf. Eq. (106)):

Av, =07(0) — v =, a;f (0) (129)

It should be noted that the use of the boundary condition (129) amounts
to accounting for the slip effect as a first order mean free path correction
to the hydrodynamic treatment. It will be shown in the next section how
this description may be generalized to arbitrary Knudsen numbers.

Let us first consider an experimental arrangement which is typical for
the determination of the shear viscosity, namely the torsional oscillator.

5.1. Torsion Oscillator Experiments

A typical torsional oscillator cell’s geometry consists of two circular
parallel plates of radius R, a distance d apart, located at z= +d/2 at the
top and bottom, and a cylindrical sidewall. The influence of the sidewall is
negligible if R>d and turns out to be trivial for R~ d and will therefore
be omitted in the calculations to follow. This cell entrains the Fermi liquid
under investigation and is assumed to oscillate with a frequency w about
the cylinder axis. In such a geometry the macroscopic velocity field is
purely azimuthal

valr, o, 1)
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where r measures the distance from the cylinder axis and —d/2<z<d/2.
The hydrodynamic form of the momentum current then reads (cf. (104)):

ovy(r, z, 1)

yu(r, 2, 1) = —n(T) —2- (130)
Splitting off the harmonic time dependence of the velocity field
vi(r, z, t) =vy(r, z) g it (131)

one may write the Navier—Stokes equation in cylindrical coordinates as

. ? 190 1 0
—iwpvy(r, z)=n [5724‘;5;_;5‘*"5—25} vy(r, 2) (132)

Dividing (132) by the viscosity # one observes that the length scale for the
spatial variation in r and z is set by the quantity

(o)== (133)
P

which is called the viscous penetration (or skin) depth, and which charac-
terizes the thickness of the fluid layer that is dragged along by the motion
of the wall. In Fig. 8 we have plotted the viscous penetration depth for

15 1 T
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Fig. 8. The viscous penetration depth & of normal and
superfluid *He(-B) at 0 bar pressure, normalized to its
value at T, vs. inverse reduced temperature, T./T.
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normal and superfluid *He-B at 0 bar pressure, normalized to its value at
the transition, as a function of the inverse reduced temperature T, /T.

Depending on the frequency of the oscillator, the viscous penetration
depth specifies different regimes of viscous confinement. If § > d, the fluid
s “clamped” and moves as a whole with the oscillator whereas in the
opposite limit § <d, only a sheet of thickness J is dragged along by the
surfaces. The purpose of the following considerations is to study the fluid
response to oscillations of the confining walls in the whole range of
parameters d/d. Defining a complex wavenumber k = (1 +§)/d, the differen-
tial equation for the velocity field assumes the form:

> 10 1 02
[5—'.‘54-‘;5;-—;54-534-/(2} U3(7’,Z)=0 (134)

The r and z dependence of the solution of (134) factorizes
b
u;;(r,z)=[ar+;] cos kz (135)

and only the choice »=0 for the second integration constant guarantees
the regular behavior of the solution at the origin. The remaining integra-
tion constant is fixed by the slip boundary condition (129), which, applied
to the double plate geometry, reads

d
v¢< g) @r—+Coa < 5) (136)

where © denotes the angular frequency of the torsional oscillator. Inserting
the solution for the velocity field (135) into the boundary condition (129)
fixes the integration constant a:

®
" cos(kd)2) — kL, sin(kd)2)

(137)

- For the torsional oscillator experiment it turns out that two quantities are
important:

(1) the cross sectional average of the velocity field vy

2 tan(kd/2)
vy —df d/zdzv r,z)=@r{— } (138)

kd 1 —k{, tan(kd/2)
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and (ii) the viscous shear force on the walls which reads for the upper wall

d\ k*d (2 tan(kd/2)
L, (”5)'6"’7 2 {kdl——kco tan(kd/Z)} (139)

The physics of both quantities is governed by the function in curly brackets
which determines the amount of viscous coupling of the fluid to the
surfaces in the presence of slip:

) 2 tan(kd/2)
F=F(d, o, (o) " kd 1 — k¢, tan(kd/2)

(140)

It is useful to evaluate the viscous coupling function F in the limits where
the viscous penetration depth is either large or small with respect to the
plate spacing d:

- A CAY So
;1$F(d,5,co)—1+3<5> \:1+6d}+

5 (141)
lim F(d,5,60)=(1+i)—[1—(1—i)§-‘—’}+
o<d d 0

The behavior of the real and imaginary parts of the viscous coupling func-
tion for arbitrary values of the parameter d/d is shown in the insert of
Fig. 9 for two different ratios (o/d of the slip length with respect to the
plate spacing.

From the viscous shear force (139) on the plates one may now com-
pute the torque that the fluid exerts on the top and bottom plates:

R
M=2 j dr r(27r) TL,.(r, 2) =’§ Rén©k2d F(d, 6, ,) (142)

0

The complex viscous torque M(z) specifies the influence of the quasiparticle
gas on the equation of motion of the torsional oscillator

IS®+{%+N} O +xkO@=Dye (143)

in which I, denotes the moment of.inertia of the empty cell, N is the
nuisance damping, x the torsion constant and D, the driving force. Calling

.=1inR*dp - R?
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Rec (w)

0 1 | {
0 2 4/

Fig. 9. The transition from fourth to first sound in a parallel plate resonator for
two values of p"/p and {,/d as a function of d/é (after Ref. 56). The insert shows
real and imaginary part of the viscous confinement function F as a function of /0
for two values of {,/d.

the fluid moment of inertia, the characteristic frequency of the oscillator
can be found to be

1 p" I, N
w=w0{1+§£p—1—'F(d,5,Co)+2;w} (144)
S had ]

where w; = /I is the resonant frequency of the oscillator. From the result
(144) for the complex characteristic frequency, one may obtain the dissipa-
tion as the imaginary part

N
Q—'=21m<3>= +2 I Im Fd, 5. ¢,) (145)
Wq Lw, p I

Using the asymptotic behavior (141) of the F-function one may evaluate
the dissipation in the limits of small and large values of the viscous confine-
ment parameter d/
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N n n 2
fim Q' = 2224 [1+6§9}

o>d TLw, p I, 129 d

N° " (146)
lim Q7 '= + 2 ReZ,(@;¢0)
o<d Isa)o ISO)O

The frequency (or period) shift of the oscillator is obtained as the real part
of the complex characteristic frequency:

280 _ Pl pe Fd. 8.2y (147)
C00 p Is

which again can be treated in the two asymptotic limits

 Aw P <54>}
im 22-2 2l 1+0(5
zo’lg}z W, pls{l—i- d*

A 4
2 tim 22 =R i Z (0 00)

d<d wo 50)0

(148)

The above calculations may be summarized as follows: There are two
quantities which emerge from a torsional oscillator measurement in the
limits of small and large d/d: In the “clamped” limit 6 > d the experiment
sees an effective viscosity

d
Nee( T) =n(T) a3 60T) (149)

in the dissipation, with the normal fluid density ratio that can be obtained
from simultaneous measurements of the frequency shift. In the opposite
limit, & < d, the same experiment measures the complex transverse surface -
(or shear) impedance Z:

o) (1=in(T)
v = (T) +(1—1) {(T)

Z (0;80) = (150)

The equations (149) and (150) for the effective viscosity and the transverse
surface impedance are the central results of this section and provide the
justification of Egs. (6) and (7) in the introduction. They show that both
quantities are affected by mean free path effects which, in our phenome-
nological treatment, enter as first order slip corrections to the hydro-
dynamic results for infinitely extended systems. In the case of the effective
viscosity the importance of the slip correction is given by the ratio {,/d, 1.¢.,
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essentially the Knudsen number Kn, whereas in the case of the surface
impedance the importance of the slip effect scales with ¢,/5, i, with the
nverse of the frequency dependent viscous penetration depth 6! oc ',
Therefore the slip correction to the transverse surface impedance vanishes
in the hydrodynamic limit @ — 0.

S.2. Sound Propagation Experiments

Let us now consider another kind of a clean experimental arrangement
for the determination of viscous transport as influenced by mean free path
effects. It is a parallel plate sound resonator, which is discussed, to some
extent, along the lines of the treatment by Hgjgaard Jensen et @l Con-
sider the idealized case of a parallel plate flow channel with height 4 in
which sound is generated on the one side, propagates in the x-direction
and is detected at the other end. The relevant two-fluid hydrodynamic
equations for this case are the continuity equation

@.4_ n?_v.;‘._*_ Savf‘_
ot P ox TP BT

0 (151)

the Navier-Stokes equation

S (152)

X

P ot TP e T T T

o o P (48 3
30x2 02| "7

and the acceleration equation for the superfluid

ot 18P , &

__YopP o |
ot pox +{s 55 (8.~ pot] (153)

The dispersion of sound can be studied by differentiating the continuity
equation with respect to time and inserting the Navier-Stokes equation.
Assuming a spatial variation in the x-direction oc exp(igx), expressing the
pressure variation by the mass density change 6P = c2dp via the first sound
velocity ¢, =(pr)~'=(1+F3)(1+ F3/3)v%/3, and going over to quan-
tities averaged over the cross section of the flow channel, one eventually
arrives at the following equation for the dispersion of sound:

62 s 62 62

In the derivation of (154), terms of the order O(qd) have been ignored for
the moment. Let us first assume that the viscous confinement parameter
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d/5 is very small so that the right hand side of Eq. (154) is negligible, 1e.,
that the normal fluid velocity field is clamped. Then we obtain from (154)
a dispersion relation of fourth sound with a complex frequency

) = (3 [ I —5"—} (155)

from which one identifies the fourth sound velocity

03=01J% (156)

and the damping or Q-factor

0 =220, (157) -
€y
Here (, is the coefficient of bulk (second) viscosity, which governs the
longitudinal degrees of freedom introduced by the longitudinal sound.’’ Let
us next relax the assumption of small d/6 and investigate the dispersion
relation for arbitrary d/6. For this purpose we need the normal fluid
velocity profile v" which is calculated from the differential equation

aZ n;
{ ,+k3] on(zy =2 c25p (158)
0z pn
to be of the form
p%(z) = c33p[ 1 + A cos kz] (159)
pw

As in the torsional oscillator problem, the slip boundary condition fixes the
integration constant 4 and after a straightforward calculation we arrive at
the desired result for the cross sectional average of the velocity field

<U§>:=§%%5P[1—F(d, 5, ¢0)] (160)

This result, when inserted into the rhs. of Eq. (154) leads to the following
general expression for the dispersion of sound in a parallel plate geometry:

o) =¢} {B—s{ - i“’”ﬂ A { 1 —4————"3@',7,(?) ~ F(d, 3, CO)H (161)
p prc

3
¢ p 1
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Here n(w) =2L,(0) a,(w)/[1 —a,(w)] is the dynamic shear viscosity which
characterizes the constitutive relation (90) for the dissipative part of the
stress tensor at finite frequencies. Not surprisingly, it is the viscous
coupling function F that also governs the finite size effects on the dispersion
of sound in a parallel plate geometry. Here the limiting cases of small and
large viscous confinement parameter d/d correspond to the propagation of
fourth (“clamped” regime) and first (“open” regime) sound, respectively.
Let us discuss the two limits separately. The dispersion of fourth sound is
obtained from (161) in the limit d/6 — 0 as

sy =2 P [ L L2 (Y Sof _ L
cy(w) =cy p {1-&-30’05 <5> [1+10 d} Q4} (162)

The imaginary part in the dispersion relation (162) has now acquired a sur-
face contribution, which, as in the torsional oscillator case, is characterized
by the inverse effective (i.e. slip-corrected) viscosity:

n

“ood
4_1=pr3+/) pw

i p 12y

So
[1+6E} (163)

In the opposite limit, d/d > 1 Eq. (161) describes the dispersion of first
sound

4 2Z
Hw)=c3 {1 _ e L(“’)} (164)
3pcy pawd
from which one finds the velocity of first sound
2w 1 ImZ
Re ¢ (w)=c, {1+ @lIm ()  Im L(w)} (165)
3pcy pwd
and the attenuation
a(a))=1m< W >=2arRe:7(a))+ReZL(a)) (166)
c(w) 3pcy pdc,

The transition from fourth to first sound in a resonator with parallel plate
geometry as a function of d/d is shown in Fig. 9 for two different tem-
peratures (corresponding to two values for p"/p) and two different slip
lengths. An inspection of the frequency dependence shows that the surface
contributions to the sound dispersion relations dominate the bulk ones in
the hydrodynamic limit. It should be noted that similar dispersion relations
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for fourth and first sound hold in the case that the shape of the flow
channel cross section is arbitrary. If the cross section is characterized by
an area S and a circumference L one simply has to replace d/2 by S/L. For
cylindrical flow channels of radius R, for example, this implies the replace-
ment d — R.

6. POISEUILLE FLOW AND SURFACE IMPEDANCE

In the previous section we have shown that the flow channel width 4
or the viscous penetration depth &, typical sizes characterizing fluid flow
experiments, are length scales on which effects of finite quasiparticle mean
free path may become important. The slip length {, appears as an addi-
tional temperature dependent parameter of the theory which renormalizes
the shear viscosity and the transverse surface impedance and turns them
into an effective viscosity and an effective surface impedance, respectively,
both of which explicitly depend on the geometry of the experimental
arrangement for its measurement.

This geometry dependence of the viscosity and surface impedance
manifests itself so far, however, only through a first order correction in the
mean free path (we are in the so-called slip regime) and, under certain cir-
cumstances, will have to be extended to larger mean free paths 4, which
may increase to being of the same order as d or d. In order to illustrate this
restriction introduced by considering only the slip regime, we have shown
in Fig. 10 various regimes of viscous penetration depths and mean free
paths. The slip regime appears in this figure as the left vertical strip corre-
sponding to small Knudsen numbers, within which one may describe
phenomenologically the Poiseuille flow and surface impedance limit of the
parallel plate torsional oscillator as well as the transition from fourth to
first sound (see previous section).

Two possible extensions of the slip regime will be discussed below:

(i) The regime of large values of the viscous penetration or “skin”
depth ¢ (“clamped regime,” lower horizontal strip), and arbitrary Knudsen
numbers. It will be described theoretically using the microscopic Boltzmann
equation for (Bogoliubov) quasiparticles as introduced in Sec. 3. The result
will be expressed as an effective viscosity of the Poiseuille flow problem 7.
valid for arbitrary Knudsen numbers Kn. ‘

(ii) The description of the regime of small 4, on the other hand,
(“open regime, upper horizontal strip) is governed by the full microscopic
result for the transverse surface impedance Z , (w) for arbitrary 4,/d, which
will also be derived below.
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Fig. 10. Dynamic regimes for Fermi superfluids in the d/6 — 4, /d plane.

Finally there is the “Knudsen regime” at high Kn (right vertical strip)
in which surface scattering processes dominate the physics for various
values of 6. We shall discuss numerical results for the effective Poiseuille
flow viscosity and the surface impedance in the Knudsen regime.

The dashed transition line in Fig. 10 marks the complicated and there-
. fore so far unexplored behavior at d/0 ~1 and 4,/d~ 1.

6.1. Shear viscosity and Knudsen Flow

It is the aim of this section to calculate the effective viscosity, as deter-
mined in a parallel plate geometry in the limit d/6 — 0, from the scalar
Landau-Boltzmann equation for quasiparticles at arbitrary Knudsen
numbers Kn = 4, /d. We start by applying the Landau-Boltzmann equation
(93) for the distribution function A, to the case of stationary flow of a fluid,
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which is confined to the space —d/2<z<d/2 befween two plane walls at
z= +d/2 (double plane boundary problem):

<i+‘1‘>h = {izn"’+iv"+ T } (167)
0z ) T PP L0y T AL T dm(L+ (F33) Yo)

Here A,,=V,.7 i1s the w — 0 limit of the k-dependent quasiparticle mean
free path. The external force F¢** appearing in (167) can be thought of as
originating from a time-dependent wall velocity (cf. torsional oscillator) or,
equivalently, from a pressure gradient (stationary Poiseuille flow):

Fex 1 0oP

Py €XE —

= —iwv'=
m Yopt Ox

This external force term appears also in the conservation law for the
quasiparticle momentum (Navier—Stokes equation)

oM (z) _  FS
oz m

—iwv(z) +

The effect of the stress tensor term in (167) is essentially to turn the
averaged quasiparticle lifetime 7 into the appropriate viscous transport
time 7,. In what follows, we shall therefore omit the stress tensor term from
the kinetic equations and replace 7 by 7, at the end of the calculation. The
kinetic equation can be formally integrated to yield

=~ LT ext
TF<

m

h(z) = Cke“‘-'"’*k:’+——(pk P r dz' {02(2’) +
ik: —d2 ’

} e "7 % (168)
The values of the distribution function A, at the boundaries z= +d/2,
required in Eq. (168) are taken from the boundary condition (cf. (116)):

[ _d <[ -d
lethk<<+E>=2 Y, W Vil hg <+§> (169)
o

V. <0

We proceed now by deriving an integral equation for the quasiparticle
velocity field v7. The integral operators L,(|z—z'|), (cf. Eq. (102)), which
describe nonlocal effects in the case of purely diffuse scattering, are
amended in the special cases of specular, backward and Andreev scattering
by integrals of the form

2Re 4% z z'
R, (z,2') =< 2V. At~ —————cosh <—> cosh <—>> (170)
( PPxV:t: 1 "Re % 7 )/,

oy
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where R=R, =5, —r and R=R(E,) in the cases of specular, backward
and Andreev scattering, respectively. With the definition (170) the desired
integral equation for the velocity field reads

= I ext

Ny _ d/2 , o y . T ¢
U.\-(~)—2L0(0)f dz'[L _(|z a|)+R_|(Z,-)][U,\-(-)+ p” } (171)

—d2

If one introduces a dimensionless velocity field w(z)

=" €Xt

viz)=—[w(z)—1] (172)
m

and the integral kernel

1
H(z, ') =6(z—2") — 3L.0) [L_(lz=2"D+R_\(z,2)]  (173)
0 :

the integral equation can be rewritten in the compact form
d:2
Hw=|  d H(z,z)w(z)=1 (174)
—d 2

An inspection of Eq. (173) shows that the integral operator H(z, -') is
symmetric

H(z,Z'y=H(Z, z)
and positive semidefinite

d?2

di2
(4. Hp)=| d:g(z)| d H(z ) $(z)>0

—-d 2

This allows us to use a variational procedure for the solution of (174): For
a set of trial functions A¢ with amplitudes A one may use the positivity of

(w— }¢ Hlw—4i¢]1)=0

for an estimate of the cross sectlonal average of the quasiparticle flow
velocity field (v?).. This can be expressed through the variational func-
tional of ¢ in the following way:

fFixt fFiXt (¢’ 1)2 B
S [(¢,H¢> 1}

oy, = (175)
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As a final step one may write the averaged velocity field <v}> in the
form of a generalization of Hagen-Poiseuille’s law

pnszixt 1
12m  ne{Kn; ¢, W}

(v = (176)

and hence express it through an effective shear viscosity functional, which
depends on the Knudsen number Kn=4,/d, on the choice of the trial func-
tion ¢ and on the details of the wall scattering processes, described by the
probability Wi, :

nes{ Kn; ¢, W} ='7(T)d+6a{1<n; W AT (177)

Our general result (177) for the effective viscosity is of a form reminiscent
of the slip corrected viscosity (cf. Eq. (149)). It is, in fact, a generalization
of it to arbitrary Knudsen numbers Kn. The Knudsen coefficient a is a
functional of ¢ and the wall scattering probability W, :

(AT

6, 0| ToKn® (178)

Here Kn° is the Knudsen number evaluated with 4, =0. It is well known
from exact solutions of the kinetic equation for classical gases that the
velocity profile is quadratic in z for small Kn and essentially flat in the
Knudsen limit.3 This suggests the use of the simplest set of trial functions
of the form

a{Kn; ¢, W} =%Kn°[

p(z)=A-2°

that allows a numerical treatment of the integrals in (178) for arbitrary
Knudsen numbers. In the limit of small Kn an analytical result for the
Knudsen coefficient can be obtained:

ILB
lim a{Kn;4—2z% W}= 0 (179)
Kn—0 A

n

with (!B the improved lower bound for the slip length (cf. (123)) derived
in Sec. 4. The variational treatment therefore reproduces the best estimate
for the slip length in the presence of elastic wall scattering processes. The
full result for the effective viscosity of superfluid 3He-B at 20 bar pressure
normalized to its value at the transition, is plotted on a logarithmic scale
vs. inverse reduced temperature 7./7T in Fig. 11. The dashed line shows the
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Fig. 11. Normalized effective shear viscosity of superfluid *He-B at 20 bar pressure vs.
reduced inverse temperature, T,/7. The dashed line represents the bulk theoretical result (cf.
Eq. (92)). The solid lines are evaluated for diffuse (1) and diffuse + Andreev (2) scattering
(order parameter step). The experimental data from a 135 zm torsional oscillator®® are shown
as circles.

bulk result. The upper of the pair of full lines (1) has been evaluated with
the assumption of purely diffuse scattering of quasiparticles off the wall.
The lower of these curves (2) has been evaluated by assuming in addition
Andreev scattering from a step-like order parameter variation near the
wall. This assumption overestimates the effects of Andreev scattering and
serves as to give a lower bound to the effective viscosity. The circles are
torsional oscillator data taken at Texas A& M.>® As one should expect, the
data points lie between the two bounds set for diffuse and Andreev scat-
tering and hence form an experimental manifestation of what has been
called the “quantum slip effect”. It should be noted, however, that the
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agreement is less good at the lowest pressure as will be shown in Fig. 22
and the discussion accompanying it in Sec. 8.

It should be mentioned here that there have been attempts to solve
this problem by describing the process of diffuse quasiparticle scattering off
flat walls. This was formulated in a microscopic model put forward by
Zhang and Kurkijarvi.*® In addition, surface roughness on mesoscopic
length scales has been treated in the work of Einzel, Panzer, and Liu®° and
by Zwicknagel and Toepffer.®' The role of mesoscale roughness is discussed
in Sec.9. Although these results lead to a slight improvement of the
description, they cannot resolve the discrepancy between theory and
experiment that is apparent at the lowest pressure.

6.2. Transverse Surface Impedance

As already explained in Sec. 5.1, a torsional oscillator experiment
determines the shear viscosity directly only if the viscous penetration depth
o is large compared to the size d of the flow channel. In the opposite limit,
one can detect a viscous force, acting on the surfaces of the container,
which is exerted by a fluid layer of thickness o only. The ratio of this
viscous force and the wall velocity »¢ is called the transverse surface

X

impedance Z , of the quasiparticle gas:

Z, (o) =H'“(0) (180)

ext
X

The aim is to generalize the result (150) for the transverse surface
impedance in the slip approximation to arbitrary values of w7 and ratios
lo/0 as well as to include the elastic wall scattering events represented
by the probability W, . For this purpose it is sufficient to examine just
one oscillating plane wall, which we assume to be located at z=0, and
restrict the fluid to be confined to the half space z > 0. This s, however,
precisely the geometry that has been treated in Sec. 4, namely the frequency
dependent single plane boundary problem. The result was the set (118) of
coupled integral equations for the velocity field v? and the stress tensor
component IT .. The method of solution of these integral equations, again
a variational one, is largely along the lines of the preceding treatment of
the effective shear viscosity and will therefore not be discussed in detail.
The interested reader may see Ref. 52 for a comprehensive treatment of the
problem. At this stage only a few important points will be emphasized. In
contrast to the Poiseuille flow case, ‘the trial functions for velocity and
stress tensor are chosen to decay exponentially away from the surface,

v(z)=A4,e” " M. (z)=Ape™ *

cl

Y e N O
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characterized by a complex wave number g, which, besides the amplitudes
A. and A serves as a variational parameter. The general form of the
resulting surface impedance functional is rather complicated and will be
omitted here. However, there are a few limits in which the resulting expres-
sions for the variational surface impedance are simple. The first of these is
the hydrodynamic limit for which g oc @'? — 0. The wavenumber g**" that
emerges after optimization can be written as

lim g ==t 14120 :
e B 5 1—JoY,/Y,)
XL3“K22+(K%2“‘L§)/(L1+K11)}
L,

Here we have used the shorthand notation L, =L ,(0) and K,, = K,(0, 0).
In the limit § — oo, ¢**" is just the wavenumber of the diffusive shear mode
present in all gases.

Not unexpectedly, the impedance turns out to be of the slip corrected
form

ILB
lim Z (0)=(1-i) 5{1—(1—-) } (181)

wt—0

with the improved lower bound result for the slip length emerging again
from the variational treatment (cf. Egs. (123) and (179)).

In order to obtain some information about the situation at arbitrary
7 one has to restrict oneself to the special cases (112), (113) and (115) for
the elastic scattering laws. An approximation for the wavenumber g™' is
then obtained as

var __l—i\/ | —iwT <1_ r(T)>
9@ =5~ T iwmb(T) 6(T)

where b(T)=[F3Y,/3+ Lo(0) L(0)/L(0)]/[1+ FY,/3] and ¢y
[1+F5/5)/[1+F3(1—-Y,)/5] The corresponding approximate form of
the variational impedance then reads

q\'ar( w )

ZJ.(CU) = 1 +qvar(w) (1;3(1 + [)/(1 —t)— ia)r,,( T)/¢2( T)

(182)

The dependence on inverse reduced temperature, T./7, of the transverse
surface impedance Z (w) of normal and superfluid ‘He-B at 0 bar
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pressure, is shown for a frequency of 100 kHz in Fig. 12. Only the initial
linear increase of Re Z, and Im Z, at the high temperature side of the
normal phase indicates hydrodynamic behavior. At lower temperatures a
deviation from hydrodynamic behavior sets in. As the elastic scattering
processes become visible exclusively through the slip correction to the
impedance, they can be detected only in the deviations from hydrodynamic
behavior which is seen to be amplified by specular (dashed line, s=0.5)
and Andreev scattering (dotted line, step profile) and reduced by backward
scattering (dashed-dotted line, r =0.5). Surface contributions to the propa-
gation of first sound have been detected in an experiment by Eska et al.®?
where they enter most prominently in the sound velocity change (cf. (165)).
The change in the velocity of first sound as a function of inverse tem-
perature T~!, as expected from (165) together with (182) in the cases of
diffuse (D) and Andreev (D + A) scattering is compared with this data in

0.18 T T T T T T T 7T
NPr Re 7oA 100 kHz

0.10

-008—1—!
0 ‘ /T 2

Fig. 12. Real and imaginary parts of the normalized transverse surface impedance
Z ,(w)/npr of normal and superfluid *He(-B) at 0 bar pressure and 100 kHz vs.
inverse reduced temperature T,/7 for different elastic scattering laws. Full lines:
diffuse scattering; dashed lines: specular scattering (s =0.5); dashed-dotted lines:
backward scattering (r =0.5); and dotted lines: Andreev scattering from a step-like
order parameter profile.
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Fig. 13. The first sound velocity ¢, of superfluid *He-B at 19 bar
and 157 kHz (open circles) from the paper by Eska et al.,® plotted
against the inverse temperature. The solid line represents the
theoretical result for diffuse scattering alone. The dashed line
includes the effects due to Andreev scattering from a step profile
variation of the order parameter. Except near T, the data are in
qualitative agreement with the presence of Andreev scattering at
the surface.

Fig. 13. The comparison of experiment and theory seems to indicate that
this experiment has most probably seen the effects of Andreev scattering on
the transverse surface impedance. The data of Ref. 62, however, only offer
a qualitative conclusion in this direction. A quantitative analysis would
become possible only on the basis of data with much higher resolution in
the superfluid phase.®?

7. EXPERIMENTAL RESULTS: SLIP IN NORMAL °He

Historically, finite size effects are difficult to observe in Fermi liquids.
This is especially so in the range of temperatures where slip effects are
a dominant contribution namely below a few mK. A real constraint in
exposing these slip related phenomena was the rather poor footing of the
temperature scale more than 10 years after the discovery of superfluidity
in *He.® _

It is generally true that slip phenomena have played a part in the early
experiments carried out on the superfluid phases. The first of these (though
not recognized as such) were the experiments on fourth sound in *He by
Kojima et al.,®> and also Yanof and Reppy.®’ These will be discussed in
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a later section. Slip related phenomena may have also been responsible for
the non-7 2 dependent behavior in the regime where A, ~d in the experi-
ment by Parpia et al?’ in a 100 um slab geometry torsional oscillator.
However, temperature scale problems confuse the issue in this experiment
and it will not be discussed further. It should also be noted that similar
non-T~2 behavior has been recently reported in the literature'® where it is
fitted to a theory'® of fluctuations above T,. This work will be discussed
later in this section.

The first systematic investigation of slip was carried out by Eisenstein
et al.®® at Berkeley. They constructed an apparatus consisting of several
reservoirs connected via different cylindrical flow channels to a single
central reservoir. The experiments were constrained to be carried out at the
saturated vapor pressure. In the experiment, a potential is applied to a
particular reservoir connected to a flow channel and the fluid is drawn up
into the appropriate reservoir and then released. Unlike the case for *He in
which the motion of the fluid is only lightly damped, the oscillation is over-
damped for *He. They measured the time constant 7(7’) of the helium level
as it flowed out of a reservoir following a change in the applied potential.

Accounting for geometrical parameters they apply Eqgs. (6) and (149)
and write

2g 1 2
1 2pg _ pg1<Tz+cé>

u(T) ZAn(T) ZAa« d (183)

where p is the mass density, g is the local acceleration due to gravity, 4 is
the cross-sectional area of the reservoirs and Z=128L/nd* is the flow
impedance of the channel with length L, diameter d. a = nT?and f=4,T"
are temperature independent constants to be determined from experiment.
A plot of the inverse time constant to the square of the temperature should
yield a straight line for the expected Fermi liquid behavior. Since the
diameter of the flow tubes is much greater than the viscous mean free path,
the contribution of the effective viscosity enters in only as the first order
correction and modifies the bulk terms with a temperature independent
contribution. Fisenstein and collaborators defined the constant ¢ as
c=8(y/A,=4.64 where the.improved lower bound to the slip length (cf.
Eq. (123)) has been used. From the slope of Fig. 14 they find #(T,) =
aT 2 =247 Poise (for the largest tube) and find 4,(7T) =BT =82 um,
somewhat lower than the expected value of 90 #m obtained from the slope
and diffuse quasiparticle scattering from the walls. Thus the experimental
value of the slip parameter, ¢ for their largest tube is approximately 10%
smaller than the expected value for purely diffuse scattering.
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Fig. 14. The inverse time constant for relaxation of the pressure head for pure ‘He
plotted against (7/T.)* for the 454 ym diameter tube (A), 354 pm diameter tube
(@) and 252 ym diameter tube (). The intercept for the largest tube corresponds
to a value for the slip that is about 10% smaller than that expected for perfectly
diffuse scattering. The data shown is from Ref. 69.

Despite the discrepancy in the slip parameter, this appearance of a
temperature independent viscosity was a striking confirmation that the
boundary condition of a Fermi liquid at a nominally rough surface is not
one where the velocity goes to zero. Further, the linearity of the graph
is a confirmation that the slip length and mean free path are closely
linked.

The experiments were carried out with three different flow channels.
All of the flow geometries show the temperature independent contribution.
However, the magnitude of.the temperature independent offsets, once
scaled for different diameters, are different from the results expected for
purely diffuse scattering at the walls. They calculate the mean free path at
T, from the measured viscous flow and assuming the diffuse scattering
result of Ref. 55. We have used these values (cf. Eq. (126)) to determine the
fraction of elastic backscattering assuming that the surfaces are diffuse
scatterers. These numbers are listed in the last column of Table 1.
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TABLE I

Numerical Results for all Three Tubes. The Second to Last Column is the Mean Free Path

at T, Using the Predictions of Jensen et al., and the Slope of the Lines in Fig. 14. The Last

Column Gives ¢, the Back Scattering Parameter Required to Account for the Smaller Slip
Observed in the Experiment (See Eq. (137)

d M B Bd/M T2 BT
(um) (1073571 (107%s71 (um) (P) (pm) t
454 17.52 15.38 399419 2474010 8244  —0.047
354 7.49 6.56 310428 228+0.11  67+£6  —0.146
252 332 375 285423  264+014  62+£5  —0184

Parpia and Rhodes™ also carried out experiments in the normal fluid
using a torsional oscillator with a more constrained geometry. The
d =45 um thick slab of *He was sufficiently small so that a Knudsen number
Kn=4,/d of nearly 2 could be achieved in this experiment in the normal
phase. In addition to the expected offset term measured in the Berkeley
experiment, higher order correction terms were also observed. At long
mean free paths the effective viscosity is further modified as the velocity
profile in the parallel plate geometry begins to differ from a parabola with
a finite velocity offset at the walls to one where the velocity profile is nearly
flat together with a finite velocity offset at the walls (see the discussion
associated with Fig. 10). The large amount of slip that this experiment was
designed to probe shows up as a temperature independent constant as in
the Berkeley experiment, together with a temperature dependent contribu-
tion at the lowest temperatures. In all cases, the effective viscosity is
reduced below that of the bulk Fermi liquid. :

According to the results of Hejgaard—Jensen et al.,> (we also note that
a qualitatively similar result was obtained independently by Jaffe”') the
viscosity can be best parameterized in terms of two scaled quantities. The
effective viscosity 7. is scaled by the value of the viscosity at a mean free
path equal to the characteristic cell size, d which leads to na=nped/5 (cf.
Eq. (177)). The temperature can be scaled to the value of the temperature,
T, at which the mean free-path 4, is equal to d. Fig. 15(a) shows 7,/Mex
plotted against (T/T,). The temperature scale is identical to Kn~'. Under
such a scaling, the effective viscosity is not expected to depart from the
(linear) slip behavior until the Knudsen number is above about 0.5. In the
experiment, the viscosity showed a departure away from the expected
behavior at a lower Knudsen number (~0.1). Also, in Fig. 15(a) Parpia
and Rhodes were able to observe a significant decrease in the effective
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Fig. 15. (a) Plot of the inverse effective viscosity scaled to the value of the viscosity for a mean
free path equal to cell height. This quantity is plotted against a dimensionless temperature
squared where T is scaled to the temperature at which the mean free path is equal to the cell
height. Experimental data—solid black line and data points plotted along with the extrapola-
tion of the high temperature data that shows the first order slip correction—the dashed line.
The intercept of this line is a measure of the slip and is found to be about 60% of the theoreti-
cal value for diffuse scattering.®® In (b), the Knudsen minimum is shown, and is displaced to

0.75 (T/T,)* as compared to the expected value of 0.5. Th
to Kn~!. Data from Parpia and Rhodes.™

e horizontal scale corresponds
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viscosity before the cell passed into the superfluid phase. This decrease 1s
eventually responsible for the Knudsen minimum (Fig. 15(b)), below which
the effective viscosity decreases as the mean free path increases. The
Knudsen minimum is a manifestation of slip and higher order finite size
effects. The inverse viscosity is expected to diverge as the mean free path
increases, but due to thermometry problems the viscosity was not measured
in the superfluid, which in any case makes the analysis somewhat more
complicated.

The value of the temperature independent offset measured by Parpia
and Rhodes is different from that calculated for purely diffuse scattering.
It implies a scattering probability that is skewed toward backscattering—
thus termed “superdiffuse.” Since the surfaces were epoxy that was set
onto polished aluminum and released from the aluminum surface through
a NaOH etch, it is possible that the surface was pitted at some micro-
scopic level after release and thus the scattering may have been altered
away from the expected diffuse behavior. The ratio of the measured slip
length to the theoretical value is 0.6. This is equivalent to superdiffuse scat-
tering parameter, = —025 (see Eq. (126)), and is comparable to the
values of the slip parameter measured in the smallest tubes of the Berkeley
experiment.

Thus these two (Berkeley & Texas A& M) experiments show qualita-
tive agreement with the results expected of Fermi liquids in the presence of
slip. However, both experiments see 2 reduction in the slip below that
expected for the case of purely diffuse scattering in the Knudsen regime. In
addition, the experiment at Texas A &M showed that higher order correc-
tion terms seem to be important at smaller mean free paths than expected
and contribute to the observation of a Knudsen minimum.

In both of these experiments, the 3He was in the well clamped regime.
In the mechanical oscillator, the real and imaginary parts can be related to
the period and the dissipation of the oscillator (cf. Egs. 145-148). For the
torsional oscillator experiments the primary quantity that is measured
is the dissipation. When the frequency and geometry are such that the
fluid is unclamped, the response of the system is described as a surface
impedance rather than as Poiseuille flow. Experiments done by Eska et
4l on the attenuation and sound velocity of first sound were the first to
probe this regime and observe the effects of slip.

In this experiment, Eska and coworkers used mylar transducers to
excite the sound modes at frequencies between 40 kHz and 300 kHz. The
cylindrical resonator had walls whose roughness was less than 9 um and a
periodicity of 50 um due to machining. The Q of the resonance was on the
order of 1000 at high temperatures and was dominated by the properties
of the mylar film. Upon application of a pulse, the decay of the sound field
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was measured and the attenuation calculated. In the hydrodynamic limit,
the attenuation can be derived from Eq. (166) and is given by

217w2+ wd
1 2Rc,

x(w) = (184)

with ¢, being the first sound velocity, J, the penetration depth and R is the
radius of the resonator. The damping was dominated by the second term
which is related to scattering from the walls. The presence of the walls and
the higher experimental frequency, leads to a change in the first sound
velocity from the bulk value, ¢, . Thus

2o Z (@) o p°
= . I P
cy=c, {1+ mchi(l_iqu)%— wpR +4pc.,< p X(w)” (185)

Z,(w) is the complex acoustic shear impedance, while X(w) is an
additional term due to the cylindrical cavity

¥o) =1 +2<Lﬂ

— 0T, | nn)> R nnR

Here n is the index which counts the harmonics. The second term in Eq. (185)
arises from zero-sound corrections and the third and fourth terms take into
account wall effects. ¢, is affected by J/R corrections and slip enters in as
a correction to the sound velocity

a
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There are more terms for the effects of zero sound that enter into the slip.
Thus the additional shift in sound velocity

_ et (2 l~> 187
":‘pc.,_[wwr,,):]<3"‘+4‘2 (87

These results can be compared to the experimental sound velocity below
about 5 mK. In Fig. 16, the hydrodynamic limit (dashed line) shows the
T~ correction to the sound velocity due to ordinary hydrodynamics. The
presence of slip (dashed-dotted line) and finally the inclusion of zero sound
effects together with slip are shown as the solid line. Thus, even in a
relatively open geometry, slip is seen to play a significant role in the
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Fig. 16. The first sound velocity ¢, vs. temperature in normal liquid *He
at 18.8 bar. The expected result for a bulk system in the hydrodynamic
limit (where the ratio of the viscous penetration depth to the resonator
radius is not negligible) is shown as the dashed line. When slip contribu-
tions are included, the temperature dependence shown as the dash-dotted
line is expected. The solid line is the expected temperature dependence
when effects due to the finite frequency (transition toward zero sound)
are included. Data shown are from Eska et al.®? ‘

modification of the sound velocity due to the influence of the interaction of
the sound with the walls of the cell.

The results of Carless et al.’® using a vibrating wire viscometer are
interesting because they show that slip does not play a part in many (par-
ticularly vibrating wire) experiments. Slip is introduced into the equations
of motion by including the boundary condition v, —u,={0v,/0r (cf.
Eq. (106)), where ( is a slip length, v, is the fluid velocity which may differ
from the wire velocity u,. Here, the response of the vibrating wire can be
divided into its real (c,) and imaginary (cp) components. The in-phase
(real) component is almost entirely unaffected by the presence of slip. The
extent of this correction to c, is seen (Fig. 3 in Ref. 72) to be almost
negligible in relation to the effect of finite size, b/a =65, where b is the
radius of the channel and a is the wire diameter.

Another experiment carried out at Texas A&M and reported on by
Einzel and Parpia®® mainly concentrated on results obtained in the super-
fluid. The oscillator in this experiment had a characteristic size of
d= 135 um. Because of the larger separation between the plates (compared
to the earlier experiment by Parpia and Rhodes), higher order correction
terms to the viscosity were not so evident. However, even this experiment
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Fig. 17. The pressure dependence of the slip parameter, 6a.
The value based on entirely diffuse scattering is shown as the
dashed line. The pressure dependence is not understood. The
data points were obtained at Texas A &M, and were reported
on in Ref. 58.

showed a small deviation from the first order slip correction. As in the
earlier experiment, the first order correction was parameterized by

6% rea
S(T)=1+67=1+6a7 (188)

The experiment found 6a to be 2.1 at low pressure increasing to 3.7 at high
pressure (Fig. 17). The first order correction term showed a systematic
increase towards the theoretical value 348 for diffuse scattering, as the
pressure was increased, although the precision of the experiment became
smaller at elevated pressure. Similar results have been recently observed in
a very different experiment performed in the unclamped limit by the group
of Nakagawa et al,”>™ though in the light of the next section which
primarily discusses the work of Ref. 19, the pressure dependence may turn
out to be an artifact of non-Férmi liquid behavior of liquid *He.

7.1. Non-Fermi Liquid Behavior of Pure *He

In several different experiments (vibrating wire, and torsional oscilla-
tors) carried out in a number of geometries, there have been consistent
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reports of a viscosity that does not behave as T2, expected of Fermi liquids.
This section is written to summarize the data, and also to evaluate in a
qualitative manner the consequence of such non-Fermi liquid behavior on
the effective viscosity.

The first indications that there were possibly some deviations from the
expected T~ behavior came after the thermometry was placed on a better
footing by the work on the melting curve of *He®* and platinum thermometry.
Carless et al.” using a vibrating wire found that the inferred viscosity (after
accounting for corrections due to finite size and slip) was best expressed as

1
T’=—=s 189
= AT BIT? (189)
where 4 and B are positive constants. Thus the apparent viscosity does not
increase as fast as it should under the assumption of Fermi liquid theory.
The value for B varies from 0.04 P~ at 0.1 bar to 145 P~' at 29 bar.
These results are shown in Fig. 18. Similar results (though with a different
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Fig. 18. Experimental values of nT? as a function of T for various
pressures. Data was taken with a vibrating wire and published by Carless
et al.” The solid curves are fits to a non-Fermi liquid like viscosity.
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fitting form and which will be discussed later) were seen at 5 bar by
Nakagawa et al.”* and more recently reported by the same group'® at a
number of pressures between 0 bar and 29 bar. Thermometry is most likely
not a factor in these experiments unless the discrepancies reflect a difference
in the thermal gradient between the thermometer and experimental cell,
because thermometry errors would produce a constant B that would be
pressure independent. A thorough discussion of the issues can be found in
Carless.”” The observation of these deviations from the Fermi liquid
behavior were also seen in a torsional oscillator experiment where the *He
was confined to a 105 um cavity (see Fig. 5 of Ref. 75). In this result, Hook
and co-workers note that B can be forced to zero if the slip length is
increased to 1.54,, which is unlikely. This adjustment would be inap-
plicable to the results of the vibrating wire experiments. So it is unlikely
that this unexpected behavior is an artifact.

The experiment by the Osaka City University group'® was the first
comprehensive attempt to examine the possibility of non-Fermi liquid
behavior of *He. Their cell consisted of a torsional oscillator with a 11 mm
diameter x 6mm high Stycast 1266 body immersed in the liquid *He. The
surface roughness was not measured. At all the pressures that they carried
out experiments at, they observed a viscosity that decreased below the
expected T~* behavior (Fig. 19). At 21 bar, the viscosity that they
measure shows remarkable agreement with the Manchester results (inset
to Fig. 19). They found that the viscosity could be best fitted to a form
different from that suggested by Carless et al. which yields a dependence
linear in T

1

T2 =
=BT

(190)

and which gave larger values of 4 and B. In addition to this dependence,
they saw a further departure from the 72 behavior. They were able to
obtain an excellent fit for this residue using the theory of Emery'® with
parameters that fell within limits proposed by Emery.

The consequences for our understanding of the properties of *He are
significant if the viscosity and collision rate show non-Fermi liquid
behavior, particularly well below T and also if fluctuations do play such
a large role in the behavior near T.. Greywall’s temperature scale® relies
on the assumption that the specific heat is Fermi-liquid-like and linear
in T. Clearly the other transport parameters should also reveal deviations,
and in fact the zero sound attenuation which involves similar collision pro-
cesses to the viscosity should display a corresponding non-T2 behavior
extending to 27T, and beyond. A fluctuation precursor effect on zero sound
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Fig. 19. The experimental values of nT? as a function of T for various pres-
sures. This data was taken with a large torsional oscillator, operating in the
unclamped limit and published by Nakagawa et al.'® The solid curves are fits to
the theory by Emery based on fluctuations above T..'® The dashed lines are fits
to the non-Fermi like viscosity behavior found by Carless et al,” whose data
at 21 bar is compared to that of Nakagawa et al. in the inset.

attenuation was observed by Paulson and Wheatley,”® but this effect was
confined to a few percent above T..

The upshot of the non-Fermi liquid like behavior is that the discrepancy
of the position of the Knudsen minimum,’° as well as the apparent need for
higher order correction terms as evidenced by the departure of the viscosity
from the first order correction at relatively small Knudsen numbers, may be
due (in part) to this deviation from Fermi liquid behavior. On one hand,
the deviation from Fermi liquid behavior seems to be least pronounced at
saturated vapor pressure (see Figs. 18 and 19), so it would seem that non-
Fermi liquid contributions would not dominate the measurements at this
pressure. Putting it differently, in the experiment by Parpia and Rhodes.”
the effective viscosity itself was seen to decrease above T, whereas in these
nearly bulk geometries, the observation points towards a viscosity that
does not increase as fast as 72 On the other hand, it is possible that the
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pressure dependence of the slip intercept is a consequence of essentially
force-fitting the viscosity to a T~* law which would produce a slightly
smaller slope and a larger intercept in figures comparable to Fig. 15.

A caveat should be expressed at this point, particularly with regard to
oscillator experiments (including those by the authors of this review), that
involve metallic components. Metals have a surprisingly strongly tem-
perature dependent mechanical Q at low temperatures. Thus background
measurements have to be carefully carried out on empty cells (see Ref. 70).
Such a background measurement is only applicable at low pressure, so
results at high pressures, where torsion tubes may be hydrostatically
stressed, may have to be carried out with *He as a medium.

The possibility of non-Fermi liquid behavior or fluctuations at tem-
peratures near T is interesting and may have far reaching implications. It
is possible that some of the discrepancies noted in the previous section
between theory and experiment may have their origin in this unexpected
but fascinating behavior.

7.2. Summary of Experiments in the Normal State

Experiments performed in the normal fluid all show qualitative agree-
ment with the theoretical expectations. Quantitative agreement is lacking at
low pressure, while there appears to be better agreement at higher
pressures for the first order correction to the hydrodynamics, though this
may be fortuitous due to the onset of fluctuations or non-Fermi liquid
effects. Also, at saturated pressure, the temperature dependent departure of
the effective viscosity from the bulk 7~? dependence occurs at a smaller
value of the Knudsen number than expected, and in addition, the Knudsen
minimum appears to be shifted to a higher temperature than expected
theoretically.> This latter effect corresponds to (in a sense) more slip than
expected from the theory. Thus one has two apparently inconsistent results.
If we parameterize the viscous behavior of the *He in terms of slip then one
can express the larger measured effective viscosity in terms of a certain
amount of backscattering. Therefore, the observed behavior i.e. less slip due
to backscattering and the presence of higher order correction terms to slip
behavior may possibly occur in a combination, the origin of which is not
presently known. A new experiment observed a non-Fermi liquid behavior
of the viscosity and also points towards fluctuations as contributing to a
non-7~? viscosity. Such behavior may in principle be able to account for
the pressure dependence of the slip coefficient. However, this non-Fermi
liquid behavior (or fluctuations) should also be manifested in other trans-
port properties which should be examined critically. More detailed
experiments of zero sound using the new temperature scale should also
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reveal the existence of non-Fermi liquid behavior. In all experiments, it will
be necessary to be able to adequately characterize the surface scattering
properties of the experimental apparatus, and in experiments using metallic
structural parts, the low temperature dependence of the mechanical Q
should be measured at a range of pressures.

8. EXPERIMENTS IN SUPERFLUID °*He

Very early in the development of the understanding of transport in
the superfluid phases of *He, it was predicted that the viscosity decrease
of the normal fraction, (1 —#/n.), should vary approximately as the gap
energy close to T.,* and that there should be a shallow minimum in the
viscosity”’®! which would then eventually attain a zero temperature
result*® of about 0.2 of the value at T..

Experiments were rapidly able to confirm the former dependence, at
least arbitrarily close to T.?° but the low temperature viscosity measured
in a torsional oscillator apparatus having approximately 94 um thick slab
of *He, showed a behavior where the viscosity appeared to radically
decrease away from the 0.15 7, plateau at about 0.8 7.*' (the so-called
droop). These observations were reported together with the first order
corrections for slip at the surface, assuming diffuse boundary conditions.*'
However, in these intermediate sized geometries, the first order correction
for finite size, namely slip, is insufficient to explain the large departure
away from the expected bulk viscosity. In the superfluid, as can be seen
from Fig. 5 the mean free path first decreases near T, before it starts to
increase almost exponentially. Below 0.6 T, the slip approximation is no
longer sufficient, but higher order correction terms have to be included (see
Fig. 10). Also, at temperatures below 0.6 T, the depression of the order
parameter near the surface results in the growing importance of Andreev
scattering processes, and as a consequence, the slip length increases beyond
the value expected for diffuse scattering alone with higher order corrections
taken into account. This quantum slip effect was discussed by Einzel et al.*
in which they were able to satisfactorily explain the departure of the effec-
tive viscosity from the bulk value using a description valid at arbitrary
Knudsen numbers incorporating both diffuse and Andreev scattering from
the surface. The many corrections and their relative importance introduced
to account for finite size effects can be appreciated by examining Fig. 20. The
bulk viscosity as calculated by Einzel** can be compared to the uncorrected
data for the effective viscosity (dots). Curves 1, 2 and 3, show the results
obtained for diffuse scattering if higher order terms are included but if no
Andreev scattering is present (1), if Andreev scattering from a step-like
profile of the order parameter is invoked (3) and for Andreev scattering if
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Fig. 20. The reduced viscosity at 30 bar plotted against reduced temperature.
The data (dots) is taken from Archie ¢t al.*' The experimental points display
the “droop” from the expected theoretical results for bulk *He (Refs. 50,
77-82). The solid curves show the effect of Andreev scattering after all the
higher order finite size corrections are included. Curve | shows the result of
purely diffuse scattering, curve 2 the effect of including Andreev scattering
from an order parameter variation néar the wall that varies on the length
scale of the coherence length. and curve 3 the effect of a purely step like varia-
tion of the order parameter. The dash - dotted line is the theoretical result for
bulk helium *He-B as calculated by Einzel.™® The dashed line includes the
same profile for Andreev scattering as in curve 2. but including only the first
order (slip) correction for finite size. For details we refer to Ref. 82.

the order parameter is allowed to vary smoothly over a length scale of the
order of the coherence length (2). The dashed line should be compared to
line 2, since it includes Andreev scattering from the same order parameter
profile, but includes only first order (slip) corrections. The reader is
referred to Eq. (128) and the discussion preceding and following it.

A comparison of the expectations of bulk viscosity and experimental
corrections due to finite size effects and slip were tested in a systematic
manner by the experiments carried out by Carless et al.* in the supertluid.
They measured the response of a vibrating wire oscillator and they con-
trasted this behavior to data obtained with a torsional oscillator with a
spherical cavity for the helium. The latter set of data was taken by Zeise
and co-workers at Cornell.* In both these experimental geometries, the
presence of diffuse scattering and slip has a rather small effect on the eftec-
tive viscosity. The characteristic dimension of the fluid container is larger
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than the viscous penetration depth, . Thus, the fluid is not in the clamped
regime at any temperature in the course of the experiment.

The effect of finite size is made most apparent in Fig. 21 taken from
Carless et al.®® In this figure the results of Archie et al*! including first
order slip corrections are compared to those of the spherical oscillator and
the vibrating wire. The vibrating wire experiments corrected for finite com-
pressibility (readers are referred to the paper by the Manchester group®’)

1.0 1 1 1 1

0.8 .

nm.

Fig. 21. The reduced viscosity at 19.9 bar obtained with a vibrating wire (solid
squares) and corrected for compressibility of the superfluid fraction (solid circles). The
corrected vibrating wire data agrees well with the results obtained with a spherical
viscometer (open circles), with radius greater than the viscous penetration depth. The
triangles are data from torsional oscillator with only slip corrections introduced (see
Fig. 20). None of the data is corrected for Andreev scattering or for terms to higher
order than the slip result. The solid line is the theoretical plot due to Ono et al”’ Data
are from Carless et al.®
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of the fluid agree remarkably well with the spherical oscillator. Both expe-
riments are in good agreement with the theoretical result of Ono et al.”
down to about 0.6 7.. In contrast, the data from the more restricted
geometry deviates from the other two experiments (and the theory)
progressively as the temperature is lowered. The Knudsen regime correc-
tions (accounting for all orders of 4/d) and quantum slip corrections for the
spherical oscillator and the vibrating wire have never been calculated, but
it is unlikely that these computations will be carried out because they are
unlikely to provide information that is different from that revealed in the
next series of experiments.

Rather than probing the hydrodynamics in the unclamped regime,
where slip effects are generally small, Einzel and Parpia carried out an
experiment in the regime where finite size effects would dominate the
measured viscosity. The experimental parameter space probed extended
down to about 0.25 T, at various pressures with a torsional oscillator with
a height d=135 um. The results are shown in Fig. 22. In these experiments
at the lowest pressure and temperatures, the viscous mean free path grew to
be as large as 1 cm corresponding to a Knudsen number of about 70, and
at 0 bar the effective viscosity had decreased to almost 3 orders of magnitude
smaller than the expected bulk result. The theoretical description developed
by Einzel includes the effects of slip and quantum slip, which together
within bounds set by diffuse scattering alone (line marked 1) and Andreev
scattering from a step like order parameter profile (line marked 2),
provides an adequate explanation for the decreased effective viscosity
observed in the experiments deep in the superfluid B phase except perhaps
at the lowest pressures. It is important to remember that thermometry at
these low temperatures may play a role and further that surface roughness
effects were never properly accounted for. Thus, at this juncture, the agree-
ment between theory and experiment must be regarded as being excellent.

In the superfluid B phase, the analogous U tube relaxation experiment
to that carried out in the normal phase by Eisenstein and Packard,®
seemed to imply that there was always some dissipation present in the
superfluid. Only the superfluid flows in the U tube experiment since the
normal fluid is clamped. However, the free surfaces also rise and fall and
these imply motion of the normal component as well. Similar arguments to
those put forward here were presented by Hall and Hook in their review.*®
Brand and Cross®’ showed that there must be a conversion of pure super-
fluid to normal fluid near the free surface. The boundary condition at the
surface states that v*=v"=velocity of the surface. They then show that
conversion to pure superflow takes place within a distance (p?(s/n.5)' 2 d
from the surface. The separation, d of the annular region provides the
characteristic size, and {; is the second viscosity. The pressure difference
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2pgx is due to a height difference 2x, that drives the superflow between the
two reservoirs. This pressure difference is then reduced by twice the pressure
head across these conversion regions, and this leads to a finite contribution
to the damping coefficient measured in the Berkeley experiment.

X+2Li+wix=0 (191)

The damping term, L is given by

'b
Q
i

—;ZEI Cillemw (192)

[ and a are the length and area of the flow channel connecting the two
reservoirs, and A is the area of the reservoirs. The oscillation frequency w,,
of the U-tube is given by

2g

i (193)

>
Wy =

b]b
R

but L (cf. Eq. 192) turns out to be so large that the system ts overdamped.
The calculation of Brand and Cross ignored the slip correction within the
annular region. The original Brand and Cross results are shown as the
upper full lines labeled 1-3 in Fig. 23. A calculation which accounts not
only for slip in the reservoirs but which is valid for arbitrary Knudsen
numbers by Einzel®® can explain the observed maxima in the U tube
relaxation parameter L. The results are shown as curves la-3a in Fig. 23.

The effects of slip also play a central role in the dissipation observed
in fourth sound experiments in superfluid *He. In these experiments, the
fluid is constrained in pores of a material whose characteristic size is
smaller than the viscous penetration depth, and also the bulk mean free
path exceeds the mean pore diameter by a substantial amount. Therefore
these experiments are carried out deep in the Knudsen regime where the
ratio of the viscous mean free path to the pore diameter is very large. Con-
sequently, the assumption that the normal fluid is entirely clamped is
incorrect and the finite motion of the normal fluid leads to a radical reduc-
tion in the Q of the fourth sound resonances. This can be qualitatively
understood by recalling the results of Parpia and Rhodes where the effec-
tive viscosity and thus the damping were seen to decrease substantially as
the Knudsen number increased. The actual calculation cannot be expected
to provide exact results since the pores are not uniform and the tortuosity
factor must also play a role. Additionally, unlike in the case of the torsional
oscillator, whose geometry can be approximated to two parallel plates, the
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Fig. 23. Values of the damping coefficient in the Berkeley U-tube experiment,* for a
227 um tube (triangles); for a 126 um tube (circles); and for a 102 um tube (squares).
The solid lines labeled 1, 2, 3 are the results of Brand and Cross?’ for the 227 um.
126 um, and 102 um tubes respectively. The inclusion of contributions to slip and even
Knudsen flow in the reservoir produces the lines la, 2a and 3a for the same
diameters.®®

effective viscosity in the long mean free path limit in a cylindrical geometry
decreases to a finite, geometry dependent value.?® For issues related to
fourth sound and slip (though not including discussions on higher order
corrections) the reader is referred to the results following Eq. (154).

Within these constraints, using the slip approximation, Einzel has
calculated that the Q in experiments carried out at Cornell®” and at
Rutgers®® should have been reduced to on the order of 100, while the
experiments were about a factor of 2 smaller. However, the theoretical
description adequately accounts for the difference between the Q’s observed
for pure “He in the same cells. Table II gives a comparison of the
calculated and experimental values.
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TABLE II

Parameters for Fourth Sound and Slip. Here R Denotes Mean Pore Diameter, Q3°, the

Experimental Value of the Fourth Sound Q. Q" Is the Expected Value of Q Based on the

Second Viscosity, Q5" Includes the Effects Due to Viscous Damping at the Surface (Hydrod.)
and Effects Due to Slip

PRESS. W R Qe

4
Authors  (BAR) T/T. 10%s™! um Qe ' hydrod. slip
Yanof &
Reppy 22.8 0.95 4.6 1 65 11,500 1770 215
Chainer
Morii
KoJima 20.6 0.86 38 0.5 35 2,400 2440 113

8.1. Summary of Experiments in the Superfluid Phase

In the superfluid phases, experiment and theory show a substantial
degree of agreement. The experiments span the range of very large
Knudsen number (such as those reported on by Einzel and Parpia) and
low temperatures. Here, in addition to finite size effects, Andreev scattering
plays a significant role. Eventually finite size effects are always seen to be
important for the interpretation of the experimental results, regardless of
geometry. The theory is also able to account for the behavior observed in
U tube oscillation experiments where in addition to the slip at the surfaces
of the U-tube, normal-fluid to superfluid conversion at the free surface
plays a significant role in understanding the damping of the oscillation.
Finally, the role of slip effects is seen to be important in quantitatively
understanding the Q of fourth sound resonances of “He in porous media.

9. MIXTURES OF *He AND “He

Mixtures of *He and *He are particularly interesting to study since
about 2 layers of the *He component are preferentially coated on the walls.
This inert layer leads to a suppression of magnetic coupling between the
surface and the *He but apparently induces relatively little change in the
scattering of the *He quasiparticles. As more ‘He is added, it builds on this
inert layer. Relatively little is known of the *He concentration in the film
of “He due to the presence of the bulk *He. It is known that when “He is
added to pure *He films, there are states occupied by *He within the *He
film.*® Thus, eventually the study of scattering from the pure *He-film
interface may provide additional insights into the properties of the mixture
film.
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The earliest experiments by Betts and coworkers® carried out on
mixtures are described by Hall (Fig. 24).”> These were carried out using a
torsional crystal oscillator with a resonant frequency of 40 kHz. There was
a large annular region around the oscillator, so that the experiments were
carried out in the unclamped regime. At the lowest temperatures, the mean
free path was on the order of the viscous penetration depth. Experiments
were done both with pure *He and various mixtures of *He and ‘He. The
viscosity of pure *He and ‘He as varying amounts of “He were added are
plotted in this figure. The Sussex group found that at some temperature
there was a clear departure of the inferred viscosity from the T2 behavior
and that this temperature increased with the concentration of *He. The
viscosity eventually regains the T2 behavior at sufficiently low tem-
peratures, but the coefficient of the effective viscosity, 72, was reduced by
two orders of magnitude at the highest *He concentrations. For all concen-
trations, the effective viscosity was smaller as the “He content increased.

Although the results of this experiment were never fully explored, a
simple picture was put forward to account for this remarkable behavior.
Hall®? proposed that since the difference in chemical potentials p;—py
must be independent of distance from the wall, x, the result is a 1/x’
barrier for He excitations. This barrier has a height of 0.3 K at 10 A from
the wall. Thus classically, there should be no momentum exchange across
the intervening *He layer with the wall. If one models the “barrier” by a
WKB potential with a cut off at about 5-10 A from the wall, a
penetrability of 1% is achieved, neatly explaining the reduction in momen-
tum transfer. Accordingly, the decrease in the effective viscosity observed
was interpreted as a change in the specularity of the scattering induced by
an intervening *He layer which appeared below a certain temperature com-
patible with phase separation in the concentrated mixture.

Experiments were also carried out in the unclamped regime using a
transversely oscillating AT cut quartz transducer. Lea et al.?® measured the
transverse acoustic impedance at 20.5 MHz in liquid ‘He-*He mixtures
from 0.05 to 1 K at various concentrations of *He. They found a remarkable
consistency of their results for these various concentrations (Fig. 25), in
which they observe a temperature dependent diffuse scattering factor «
(where a=1—s, Eq. (112)) to vary from 0.3 at low temperatures to nearly
1 at high temperatures. They. hypothesize that this large a diffuse scattering
factor is plausible because of the surface roughness introduced by the gold
evaporated on the quartz surface. The temperature dependence of the
specularity was attributed to the reflection properties of the barrier as
calculated by Hall.®? A fit to this model was not particularly satisfactory
and was unable to reproduce the nearly diffuse scattering observed at high
temperatures. By examining the contribution of 2D surface rotons at the
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Fig. 25. The diffusivity coefficient 2 =1 —s plotted against the tem-
perature in Kelvin for the reflection of quasiparticles from gold plated
quartz surfaces. The dashed line corresponds to diffuse scattering
of quasiparticles with energy greater than 1.2 K convoluted to the
residual roughness of the surface. A better fit is obtained when the
interactions of quasiparticles together with interfacial rotons is taken
into account, with the roton gap of 5.85 K. This yields the solid line
shown in the figure. The data and fits were reported by Lea et al. in
Ref. 93.

interface, they were able to obtain a good fit to the data taking into
account the smaller energy gap of the 2D surface rotons (5.85 K) compared
to those in bulk. The fit that they obtain using both mechanisms (the
barrier at the surface due to exclusion of *He from the walls, and the roton
contribution) seem to give good agreement with experiment as shown in
Fig. 25. For details of the fit, we defer to the original publication.”
Experiments carried out in saturated mixtures at very low tem-
peratures continued to show rather curious behavior (Fig. 26). Guenault et
al®* used a vibrating wire to probe the viscosity of the 6.4 % solution down
to 0.4 mK. They found that the response of the wire deviated strongly from
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the result expected under conditions that include slip at a diffusely scat-
tering surface. In order to extract the viscosity—which Guenault et al. did
not do—both the in-phase and out-of-phase signal voltages have to be
deconvoluted. Instead, Guenault et al. display their data in terms of the
frequency shift (Af,/f,) and resonance width (Af, /f,).

A n
Mi_p Py
fO 2pw 2pw
(194)
& Py
fO Pw

where k and k' are as defined by Stokes,®> and depend on the ratio of the
wire radius, a to the viscous penetration depth, J. p,, refers to the density
of the wire. The first equation represents the contribution of the fluid to the
inertia of the wire and the second equation the dissipation as characterized
by the width of the resonance Af,. As Guenault and Pickett point out,” to
qualitatively understand the behavior, one should consider the response of
the wire vibrating in a fluid of zero mean free path. Since 7 is zero, the only
contribution that the fluid makes is to the inertial term which shows a shift
due to the volume of fluid displaced as the wire moves (k=1, k' =0). As
the viscosity increases, more fluid moves with the wire, and this is accom-
panied by dissipation (k <1, k' > 0). This is the Stokes result, with (k' =k)
and is shown as the line marked “A” in Fig. 26. The effect of slip is to
modify the boundary condition, and these corrections enter into the Stokes
equations through a parameter §,>

Lo 1
0 1
da 1+C0/a ( 95)

The results of the slip correction are shown as the curve “B” whose region
of validity is limited to temperatures above 3 mK or when the mean free
path is less than the wire diameter and f < 1.

To understand why the response of the wire bends back onto itself, it
is useful to examine the limit of infinite mean free path. The dissipative
term (Af,) is proportional to the force on the wire and the force is propor-
tional to the velocity. Consider the motion of a wire of unit length, and
radius @, moving with velocity ¢ as it encounters quasiparticles of density
n, and group velocity v,. On the leading side, the wire intercepts a(v, +v) n
particles per unit time and on the trailing side a(v, —v) n particles. Each
collision leads to a momentum transfer of order 2p¢ with the wire. Thus the
force on the wire is F= —Anpav where A is a constant, and is propor-
tional to and in phase with the velocity, so there is no contribution to Af.
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Fig. 26. A plot of the frequency shift Af, against the resonance width Af>. Af, represents
the additional inertial mass coupled to the wire. With lower temperature. both the iner-
tial and dissipative terms increase as the viscous penetration depth increases. This is the
Stokes functional form shown as curve "A." In the presence of slip there is less mass
coupled to the wire and thus Af, is lower than the Stokes case (B). When £ becomes
comparable to the experimental size. the Stokes description is not valid. In the extreme
long mean-free path limit, the force (on the wire) is proportional to the wire velocity.,
thus affecting the damping but not the inertia. and causing the response to bend back
to the vacuum period with additional dissipation. *C” includes a fit accounting for the
finite compressibility of the liquid. Curve “D” shows the result of an empirical
modification to the form of f# (Eq. 195) used in curve “C.” details of which can be
found along with the data in the paper by Guenault et al.>*
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Consequently, there is finite dissipation, without additional inertia in this
limit. Thus the infinite mean free path and zero mean free path points
should both occur at the same frequency, with the long mean free path
contributing a finite amount of damping. The extent and shape of the Af,
vs. Af, curve then depend on the details of scattering from the surface.

Carless et al. calculated the corrections (curve marked “C”) that would
have to be included to account for the hydrodynamics of a vibrating wire
in helium. In addition to contributions that account for the compressibility
of the fluid, Carless er al. use a different equation for f to interpolate
between the zero and infinite mean free path limits

_ Gyl +ald/a)

p a l+4i/a

(196)

where « is a constant of order 2. In the results plotted by Guenault e al.,
they found that the description provided by Carless et al. was not sufficient
to correct for the observed behavior. Instead they had to allow for a still
greater correction (by about 30%) to account for the data (see curve “D”
in Fig. 26). While there is no current understanding of the origin of this dis-
crepancy, it is possible that since the corrections of Carless er al. were
carried out for pure *He and this is entirely a dilute solution, then there
may be additional corrections due to Fermi liquid factors. Further, the
analysis neglects any variation in the concentration profile away from
the wire, and this may play a role in the smaller momentum coupling to
the fluid from the wire in a manner similar to the argument presented by
Hall to understand the result of Betts er al.

The early experiments of Betts er al. showed that when surfaces were
coated with a solution of *He (perhaps with *He impurities in it), that the
momentum transfer was strongly impeded, leading to a specularity induced
presumably by the presence of the intervening layer of *He acting as a
barrier to the incoming quasiparticles. An experiment by Freeman and
Richardson® was the first to observe that the momentum transfer is radi-
cally affected by the superfluidity of the *He film layer. The experimental
configuration consisted of a stack of mylar plates separated by polystyrene
spheres. Enough “He was used to coat the surfaces so that there was a film
of “He fluid on the surface of the mylar plates. As the temperature was
lowered, the mechanical oscillator showed the progressive coupling of the
‘He contained within the plates. At some temperature [ 190 mK and 80 mK
in Fig. 277 the intervening film of *He passed into the superfluid phase.
and the result was a strong decoupling of the moment of inertia of the *He
from the mechanical oscillator. This experiment demonstrated that the super-
fluidity of the intervening *He layer increases the specularity of a surface,
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and the momentum transfer is affected by the state of the intervening *He.
While there were not any possible conclusions about the applicability of
the explanation provided by Hall, certainly this experiment demonstrated
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Fig. 27. The torsional oscillator period signal (Dash-dot line) obtained by
Freeman®’ showing the large decrease in the fluid inertia coupled to the
pendulum due to an increased slip (due to change in specularity) induced by the
onset of superfluidity of the *He film. A small increase in the dissipation (solid
line) is also seen due to the unlocking of the fluid. The lower temperature data
was obtained at 29.3 bar, while the higher temperaturé data was measured at 8.7
bar. The amount of *He in the cell was constant, and the different onset tem-
peratures are thought to reflect the pressure dependence of the solubility of *He,
the pressure dependence of the inert layer, and possibly the rearrangement of
the amount of “He in the fill lines and heat exchanger.

that superfluidity of the *He component adds to the specularity.

Concurrently with Freeman’s experiment, the results of Ritchie,
Saunders and Brewer®® provided more puzzling data on the scattering
properties of superfluid *He coated surfaces and mixtures of *He and ‘He.
This experiment consisted of a hollow cylinder machined from Stycast 1266
epoxy and operated at its torsional resonance at about 1.8 kHz. Since the
fluid within it was unclamped, the experiment measures the transverse

impedance (see Eq. (7), (150) and (182)).

Z (w)=X(w)+iY(w)
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Both the real and imaginary parts of the complex response were measured
(see Fig. 28). For pure *He, the real and imaginary parts should be propor-
tional to one another. When the ratio of these was calculated, it was found
to be close to 1, and nearly temperature independent, in conformity with
theoretical expectations. Upon adding *He the ratio decreased dramati-
cally, with less fluid being coupled to the oscillator ( Y/X decreased), and
the absolute values of both of the real and imaginary terms decreased. The
real and imaginary terms were both relatively temperature independent. In
this experiment, the effective viscosity of the helium decreased by about a
factor of two upon adding 3 to 4% *He. Estimates that included a large
degree of specular scattering were not able to explain the result since this
should exhibit some temperature dependence which seemed to be lacking
in these experiments.

Einzel, Panzer, and Liu® recognized that the surface scattering could
be radically affected by the mesoscale features on a surface. If the scattering
is in the highly specular regime such as that induced by surface superfluid
*He, then the slip length may become extremely large, while the mean free
path in the normal *He may still be small enough compared to d the
width of the flow channel, to apply hydrodynamics. If the surfaces of the
boundaries are rough with some mesoscale curvature, then the slip length
can be bounded from above in the presence of specular scattering. They
modeled the surface corrugation by assuming a periodic variation of the
height with a periodicity of order 1/g, and a dimensionless height param-
eter, k, given by x =h,q. The results of this calculation are summarized in
Fig. 29. As the mean free path increases (for example with lower tempera-
tures), in the absence of mesoscale roughness the effective slip length (.,
will also increase without bound (dashed line in Fig. 29). If there is
mesoscale roughness, (x> 0) the actual slip length can be limited to being
on the order of the periodic modulation when the product ¢{, is very large.
Thus, depending on geometry and the variation of {, with temperature,
radically different behavior from the pure specular result (Eq. (112)) may
be manifested in an experiment. Einzel et al. found that by assuming a
periodicity of 1.8 um, and a height of the surface roughness features of
1 um, the slip length would be limited to about 6 um. They found this
to be a reasonable approximation to the data of Ritchie, Saunders, and
Brewer. Wang and Yu®® adopted a different approach to develop a model
to explain the results of this experiment. They considered the impedance of
a thin boundary superfluid *He layer in series with the liquid *He. With
this approach they attributed the momentum exchange mechanism across
the superfluid layer to the presence of vortex lines in the *He film. Without
the construction of a special surface with a well characterized roughness, it
is difficult to assess which of the contributions (vortex lines or mesoscale



88

Dietrich Einzel and Jeevak M. Parpia

1-3|]l|l]l]|lla

0.6 &6 —

50 100 150 200 250 300

Q
Z
u0.8
b
[
o
,80.6
\u ‘
> V0 »
A® ~pa A A
0 ‘ p— A\\\ ‘ A ‘ ‘ m——n
- \\\\ -
0.2— el —

0.0 1 l ! | 1 l | l ! l |
0 50 100 15 200 250 300

Teqmratur'e'1 k1)

Fig. 28. (a) Measured value of the inertial term (Y) divided by the dis-
sipative term (X) against the inverse temperature. Filled squares, pure
*He: open squares, x, = 0.005, open diamonds, x, =001, filled diamonds,
x,=0.02, open triangles. x,=0.03, filled triangles. x, =004, circles
x,=0.0514. The dashed line represents the theoretical result for pure
*He. When “He is added. the inertial term decreases more rapidly than
the dissipative term. (b) The ratios X /X, and Y./Y,, (the subscript
refers to a concentration) vs. the inverse temperature. X /X, (xy=
0.03—open squares, x,=0.04—filled squares). ¥./Y,: (x4 =0.03—open
triangles, x, = 0.04—filled triangles). The curves show the result for slip
theory with a specularity of 0.975 for X./X, (solid line) and Y, 'Y,
(dashed line). The temperature dependence does not replicate the experi-
mental result. The results are trom Ref. 98.
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Fig. 29. The effective slip length Z , for a cosine surface profile plotted against
o where &, is the microscopic slip length given by «4,,. If there is no mesoscale
curvature, the slip length =, and is shown as the dashed line. Solid lines
show results for surface corrugations ~ =0.25-1.0. where x = ¢, =h A. For sur-
face corrugation where 4, < | the slip length can be negative. In the case of
large scale corrugations. with wavelengths smaller than 4,. the slip length can
be much reduced (the flattening seen for ¢Z,>10). Such behavior can
qualitatively model the results obtained in the Ritchie. Brewer. and Saunders
experiment”® but cannot explain the lack of temperature dependence. The plot
is taken from Ref. 60.

roughness) dominate the momentum transfer process at a *He covered
surface.

Vibrating wire measurements carried out in Bayreuth by Konig and
Pobell'” also took into account the effects of finite slip. They included the
effects of slip in both the real and imaginary response functions and, were
able to extract the viscosity after correcting for slip. In these experiments
(for example for a 0.98 % mixture at three pressures) they found a plateau-
like region with a coefficient of viscosity of about 2 x 10~° poise K*. They
found that the viscosities extracted in this manner were in fair agreement
with the theoretically expected values for various dilute solutions. At tem-
peratures below about 2 mK, the mean free path exceeds the wire diameter,
and the result is that first order correction terms are not sufficient to
provide an adequate hydrodynamic description. (This effect is similar to
that observed for pure *He and which was discussed along with Fig. 20, in
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the case of the torsional oscillators.) Therefore, the apparent viscosity
shown in Fig. 30 shows a decrease below the expected T ~2 behavior.

Experiments on films of 3He carried out by Steel and coworkers'®'
measured the superfluid transition temperature with and without a coating
of superfluid “He on the surface. When the onset of film flow was measured
for pure *He films, they found that the transition temperature was sup-
pressed to almost 0.6 of the bulk value for their thinnest film. They also
found that the ratio of the film to bulk transition temperatures, T./T g,
varied as d ~2, where d is the film thickness. This result was in agreement
with a calculation by Fetter and Ullah.!°? Following on the Freeman and
Richardson experiment,”” they observed that when the surfaces were coated
with even a single monolayer of “He, that the transition temperature of the
e film was restored to the value of the bulk superfluid at saturated vapor
pressure.
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Fig. 30. The effective viscosity of the dilute solution (obtained by Konig and Pobell'™).
behavior down to low temperatures. The decrease in the effective
viscosity at very low temperatures is related to the mean free path exceeding (at 2 mK) the
wire diameter. Thus, additional correction terms beyond the first order slip correction would
have to be introduced to account for the observed behavior.
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Tholen and Parpia'® investigated the scattering properties of a highly
polished silicon substrate. Two plates of silicon formed the confining sur-
faces of a parallel plate viscometer. With pure *He they found that the
viscosity exhibited a temperature dependent specularity that varied from
about 0.4 at 10 mK and decreased as the temperature was lowered. Although
no explanation was provided for this effect, they also found that the
specularity was not altered when the surfaces were coated with a single
monolayer of *He but that the specularity increased when the *He (in the
superfluid state) coated the surfaces to 2 layers. Further increases in “He
coverage resulted in a rapid increase in the specularity of the system till at 9
layers there appeared to be close to saturation with a specularity of greater
than 90%. The effective viscosity showed a continuous decrease away from
the pure result as the *He was added. In Fig. 31(a) the results on the effective
viscosity as the *He content was increased are shown. In Fig. 31(b) the tem-
perature dependent specularity value 1s shown. The temperature dependence
remains an unknown in these experiments. Finally, in Fig. 31(c), the
specularity factor at 3 mK is shown, illustrating the onset of specularity
presumably induced by superfluidity of the surface “*He. Other than the tem-
perature dependence of the specularity, the picture seems to be in reasonable
conformity with the model put forward by Hall to explain the increased
specularity observed by Betts and coworkers in the early Sussex experiments.

Tholen and Parpia also found in a separate experiment,'® that the dif-
fuse scattering result could be regained when the surface *He was solidified
by the application of pressure. Thus, once the surface layer is solidified,
quasiparticles scatter off from the solid *He surface much as they would
from a surface before *He is added. These results were obtained by
studying the superfluidity of the *He contained within pores of silver sinter.
The boundary condition being relaxed from diffuse towards specular results
in a reduction of the suppression of the order parameter near a surface, and
thus the superfluid fraction may be used to infer the specularity of the
scattering at the surface. These resuits show that the magnetic state of the
solid *He at the surface probably has little to do with the boundary condi-
tion at the surface.

A very comprehensive series of experiments on porous powders was
carried out a little later by the Osaka City University Group consisting of
Kim, Nakagawa, Ishikawa, Hata and Kodama and Kojima.'” Using a
fourth sound technique they found a different pressure dependence to that
observed in Ref. 104 (as well as the absence of the hysteretic solidification
seen in Ref. 104). Using several powdered samples that acted as superleaks,
they found that the specularity of the surface layer increased for coverages
of between 1 and 2 layers and appeared to be nearly complete at 3 layers
for the Ag sinter, and the 3um and ! xm alumina powders, while the
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smallest powders (0.3 um) continued to show substantial suppression of
the superfluid fraction at this coverage.

9.1. Summary of Experiments on Mixtures of ‘He and ‘He

In general then, the results in the mixtures show that there is substan-
tial agreement between the theoretical expectations and experiment. There
are still some questions related to details of the momentum transfer

0.1

vvv
_OOOQOOO V' ;-.‘ o

Effective Viscosity (Poise)

-... N\ B

0.01

T 1 ¢V ¢ 1

A A PUNSEES UHEY WY S W W | n A

1 10
Temperature (mK)

Fig. 31. (a) Data on the effective viscosity obtained by Tholen and
Parpia'® for a parallel plate torsional oscillator with a 57 ym gap. The
solid lines from top to bottom correspond to no ship, (=7, purely
diffuse scattering (s=0), s =02, 0.4, 0.6, 0.87. 0.92. and 0.97. Solid
circles correspond to pure ‘He: open diamonds to 20.8 x mol/m=; open
squares to 30 gmol/m=: tilled triangles to 39.2 gmol/m?; open circles to
57.7 umol/m?* and filled squares to 115 mol/m> (approximately 9
layers). (b) The calculated specularity values corresponding to the data
in Fig. 31(a); the open stars correspond to the 86.6 umol coverage not
shown in Fig. 31(a). The origin of the temperature dependence is not
known. (c) The specularity taken from Fig. 31(b) at 3mK is plotted as
4 function of the *He coverage. The solid line is a guide to the eye.



Slip in Quantum Fluids

o
- ' it' LR R '
Y vy ()
(10
o | .
20 poooBtofo o
.go' " 0pgt”® .00000""'.0."-
o ° o
3 5
0 < §%0
Q ~ I ]
mo
.@0
0. 08
N .OQO 7
o (]
= ' : ‘
0.0 5.0 10.0 15.0 20.0
Temperature (mK)
=
—e
(c)
>,
=
| -
25
3 o '
)
Q
n
o - :

“He layers

Fig. 31 (Continued)



94 Dietrich Einzel and Jeevak M. Parpia

mechanism across the “He boundary layer, as well as the temperature
dependence of the experiments performed by Ritchie and coworkers.

10. EXPERIMENTS IN SUPERFLUID “He

As already discussed in section 2, in pure *He, there are two sets of
excitations, the phonons and the rotons. Each has their own mean free
path and thus each component has to be considered separately for slip
corrections. In this section we summarize the study of the viscosity of “He
as reported on in two works.

Lea, Fozooni, and Retz'® carried out measurements of the complex
acoustic impedance at frequencies of 20.5, 34.1 and 47.8 MHz. They
measured the O and resonant frequency of a shear mode quartz crystal
resonator that was directly immersed in the liquid. The temperature
dependence of the viscosity was deduced from the impedance, using
tabulated values of the normal fluid density. In this experiment, w7 >1 and
also the mean free path of both phonons and rotons greatly exceeds the
viscous penetration depth. Thus the experiments are carried out in the non-
hydrodynamic or collisionless regime, where w?>1 which gives rise to
relaxation effects and 4,/0 >1 which gives rise to non-local behavior. In
this collisionless regime where there is no local equilibrium, the concepts of
viscosity and penetration depth are inappropriate.

In the hydrodynamic regime where w7 <1 and 4,/ <1, the complex
pedance is written as-Z (T)=R(T)—iX(T)=(1—i)(wnp"/2)'?. The
presence of liquid helium decreases both the Q and the resonant frequency
(w =2nf) of the quartz crystal oscillator by:

106

4R(T) fX(T)
= ; Af = 198
He "~ naR, 4 nnR, (198)
where R, is the transverse acoustic impedance of the quartz, and n is the
harmonic number of the resonance. Lea, Fozooni, and Retz define two
viscosities 77, and 7, that are derived from the real and imaginary part of
the complex surface impedance in analogy to Eq. (7)

n(T)=—2= RXT);,  ny(T)= X(T)  (199)

wp™(T) wp™(T)

These terms can be analyzed to yield the effective viscosities. The viscosities
n, and 7, strongly deviate at low temperatures in the non-hydrodynamic
limit from those obtained by a vibrating wire viscometer in the hydro-
dynamic limit. The data are shown in Fig. 32. For T>16K, the
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Fig. 32. The viscosity of *He plotted as #, and #n,. n,, n, are
determined from the real and imaginary parts of the transverse
impedance of a 34.1 MHz crystal. The dashed line is the result
obtained using a vibrating wire viscometer. At frequencies used in
this experiment wt>1 for temperatures below 1.6 K. Also,
4,/6 > 1 producing non-local effects. The small maximum in 7, is
the result of the rapid increase in phonon viscosity. The data
shown were obtained by Lea, Fozooni, and Retz.'%

experiments are in the hydrodynamic regime with mean free paths for both
phonons and rotons being smaller than the viscous penetration depth. In
this regime, the agreement between these high frequency measurements and
the results obtained at low frequency with vibrating wires or oscillating disc
experiments is excellent. However, at lower temperatures, instead of the
rapid rise in phonon viscosity seen in oscillating disc experiments, the
viscosity falls rapidly due to non-hydrodynamic effects (wf>1), leaving
only a small maximum in n,. The position of the maximum is used to
determine that the fraction of phonons scattered diffusely is about 0.3 or
less.

The analysis by Lea et al. concentrates on effects in the temperature
range below 1.5 K where the assumption is that the viscosity is due to that
of a dilute gas of rotons which scatter diffusely from the crystal. It is impor-
tant to realize that these low temperature results are in sharp contrast to
the measurements of Morishita et al.*? to be discussed below. These dif-
ferences are primarily due to the high frequency regime (w7 > 1) that the
quartz oscillator operates in.
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Between 1.2 and 1.5 K, Lea et al. identify a plateau region for »,. In
this region they find the roton viscosity to be 12.5 4P in agreement with
previous work. For a gas of excitations in the collisionless limit (w7 > 1),
the acoustic impedance IT,. is just the momentum flux away from the sur-
face. Thus, from kinetic theory, in the collisionless limit, the transverse
surface impedance is given by

lim Z ()= la,p"0, (200)

T — 7

where 0., i1s the root mean square velocity of excitations and «, is the
fraction of diffusely scattered excitations.

In helium, excitations in the form of phonons and the rotons are both
present in thermal equilibrium. Lea et al. argue (following the work of
Nadirashvilli and Tsakadze'?”) that the rapid rise in the phonon viscosity
seen at low temperatures, is quenched at these frequencies and only a
remnant is seen in the weak maximum in 5, at about 14 K. Lea et al.
then estimate the phonon viscosity only contributes a few percent to the
acoustic impedance at low temperatures. Therefore, the high frequency
experiments measure the roton contribution at low temperatures.

The two quantities 5, and 7z, can then be calculated from the
measured real and imaginary impedance contributions and the roton den-
sity p"(T), and these show a rapid decrease of the roton viscosity in the
low temperature collisionless regime. From the Landau-Khalatnikov
theory!? which gives the roton viscosity in terms of the relaxation time for
the dominant roton-roton scattering and the scattering rate as given by
Roberts and Donnelly,'” together with expressions for the mean roton
velocity and the roton density, Lea et al. find that the calculated impedance
in the collisionless limit is much greater than the experimentally observed
behavior, if the roton scattering is assumed to be diffuse. The effect of finite
wt 1s to reduce the impedance below this limit. They consider a theory for
viscoelastic liquid which allows for relaxation effects but it does not yield
a good fit. Finally they employ the work of Borovikov and Peshkov'®”
which corrects the hydrodynamic impedance for finite 4,/ (The Fermi
liquid analogue is Eq. (182))

oo (= i)ewn,p"/2)"
2@ =T Baie (201)

where ¢ is given by Eq. (133) with #, the roton viscosity, and £ is the roton
slip coefficient. This expression is valid only as a correction to the
hydrodynamic regime, but by setting f =27/5«,, the expression reduces to
the correct one in the limit of hydrodynamic and collisionless regimes. This
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expression then gives reasonable fits to the data of both 5, and 7, when
a, =1 (diffuse scattering limit).

Morishita et al.,** used a vibrating wire with a resonant frequency of
225 Hz. At this low frequency, the viscous penetration depth is much longer
than in the previous experiment and so the transition out of the
hydrodynamic regime does not occur till about 0.7 K. The signature of the
departure from the hydrodynamic regime is a peak in the dissipation vs. tem-
perature. Shown in Fig. 33, curve “A,” is the expected result using the Stokes
equations® for a vibrating wire. This is satisfactory down to about 1.2 K,
but then the experimental data consistently falls below the calculated result.
They found that the slip corrected™ effective viscosity deviates substantially
from their result shown as curve “B.” This is not surprising since it has been
seen that the slip condition is not sufficient to describe the behavior in the
general situation which includes the long mean free path (Knudsen) limit.
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Fig. 33. The behavior of a vibrating wire immersed in pure *He. The low temperature
behavior (Curve D) shows a power luw decrease in line width. Below 1.7 K. the only excita-
tions present are phonons whose mean free path 4, > d the wire diameter. The maximum at
0.7 K is due to the transition from ballistic to hydrodynamic behavior (wr=1 at 0.7K).
Curve A is the result of the Stokes solution to the motion of a vibrating wire and is adequate
down to 1.2 K. Including the effects of first order corrections to finite size effects results in B.
Curve C is obtained when the variation of the wire velocity along its length (due to the
geometry of the vibrating wire) is replaced by an average velocity. The agreement is markedly
worse using the average velocity. In curve E. experimental data''* """ is used to predict the
line width and shows good agreement down to 1.5 K The plot is from Morishita et «l.*
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At very low temperatures, phonons are the main excitations in helium-II.
The phonon wavelength is much smaller than the wire, and thus the
phonons are expected to behave ballistically. In contrast to Lea et al., these
experiments are carried out in the limit of low frequency (w7 < 1) but long
mean free paths. Therefore, they calculate the drag force as was done by
Guenault and Pickett,% and thus obtain an expression for the width of the
resonance

2.67
Af,=
/2= hutalp+ 7

(ks T)* (202)

where p,, is the wire density, u, is the first sound velocity and a the wire
radius. Eq. (202) is plotted in Fig. 33 as curve “D.”

Morishita et al. have shown that the behavior of a vibrating wire
immersed in a fluid with very dilute excitations still can be understood
rather well. The first order slip correction at the surface is not sufficient to
understand the data. However, higher order terms have to be introduced
(even though these can only be approached in a phenomenological way) to
successfully account for the dissipation in the fluid.

10.1. Summary of Experiments in ‘He

These two experiments examine non-hydrodynamic effects that occur
in both the roton and phonon excitations under very different limits. In the
first experiment that we described, at high enough frequency (w7 > 1) the
roton contribution dominates. However, the phonons are more important
in the ballistic limit. In “He, the characteristic length scales grow to be very
long but as in the case of *He superfluid and the mixtures of *He and “He,
there appears to be quite a reasonable agreement between the expected
results and the actual experiments. In “He superfluid, there has not been a
concerted effort to compare details of the effective viscosity to the expected
results of the bulk viscosity. Nevertheless there appears to be strong
evidence that the behavior observed in the vibrating wire and in surface
impedance measurements are in good agreement with the expected
response of the superfluid and its dilute excitations.

11. SUMMARY AND CONCLUSIONS

In this review we have studied theoretical and experimental aspects of
finite size effects on the viscosity of the quantum liquids ’He and “He. In
the theory section we introduced viscosity as a dissipative phenomenon,
which can entirely be associated with the gas of elementary excitations,
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namely the phonons and rotons in superfluid “He and the Landau- and
Bogoliubov quasiparticles, respectively, in normal and superfluid *He. At suf-
ficiently low temperatures these quasiparticle systems form dilute gases,
characterized by low (normal fluid) densities p* and long mean free paths A7*.
Kinetic theory produces very simple expressions for the normal component’s
shear viscosity #°* occ p5*A5*. We argued that 4, cannot increase to arbitrary
high values at low T, but is either bounded by d, the typical dimension of the
experimental cell in a low frequency Poiseuille flow experiment or by J, the
viscous penetration depth characteristic of a high frequency surface
impedance experiment. If A7* is small (but not negligible) w.r.t. d or 0, we
showed that the hydrodynamic viscosity will be renormalized (and in
general reduced) by a first order slip correction 7. oc n°/(1+alo/
max{d, 6}) with a slip length {, oc 4,. Mean free path effects on the
Poiseuille flow and the surface impedance manifest themselves in different
effective viscosities, which we studied not only in the slip regime (small
mean free paths) but also in the general case of arbitrary ratios 4,/d and
A,/6. We now summarize the results of comparisons between experiment
and theory for the various quantum fluids and different experimental methods.

In the normal state of pure *He there are a number of puzzles that are
unresolved. Firstly, all measurements of the effective viscosity point toward
a smaller than expected “super diffuse” slip length at low pressure. Several
experiments have observed a pressure dependence of the slip coefficient.
This point is as yet questionable, since the recent observation of a non-
Fermi liquid viscosity opens up the possibility that the slip parameter does
not vary as much as was previously thought. The temperature at which the
Knudsen minimum is seen is higher than the theory predicts. The tem-
perature dependence of the slip measured in the experiment on polished
silicon, is also unresolved. While many of these experiments may well be
dominated by details of surface preparation, it is clear that the picture is
as yet incomplete. The possible non-Fermi-liquid behavior of the viscosity
particularly below about 27 has to be considered, and should be carefully
examined using other techniques such as zero sound and by measurement
of other transport properties. Clearly the origin of the deviations in early
experiments from the expected behavior may originate in non-Fermi liquid
properties of *He or as a result of poorly characterized surfaces. Thus, there
continues to be room for new experiments with well characterized surfaces
and others which might be specifically designed to probe the properties of
bulk normal liquid (with no ambiguities concerned with thermometry).
These experiments should examine in detail the roughness dependence of
the slip parameter. Other experiments which can differentiate between non-
Fermi liquid behavior and the location in temperature of the Knudsen
minimum would also be desirable.
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In the superfluid phase of *He, there is rather good agreement between
theory and experiment, once the possibility of the transition to Knudsen flow
and Andreev scattering are taken into account. However, surface roughness
effects have not been studied in detail in this system. Low pressure resulits still
appear to fall outside of the bounds of the theoretical expectation, even when
Andreev scattering is accounted for. It is possible that thermometry intro-
duces the dominant error in comparisons between theory and experiment.
Slip and other mechanisms (such as the conversion between normal and super-
fluid components at a free surface) have been able to account for a number
of puzzles such as the excess damping in fourth sound experiments and the
over damping in U-tube experiments. The fact that the slip can be modified
by the addition of “He superfluid surface layers in many of these geometries
has not been used, but, in view of the complexity of and time scales for execu-
tion of these experiments, it is unlikely that these variations will be tested
soon, except perhaps in the context of superfluid Josephson junctions.

In the case of mixtures, while it is true that vibrating wire experiments
appear to yield effective viscosities that are reasonable, it is also important
to realize that mesoscale curvature notwithstanding, there is the likelihood
that the effects of surface *He are not understood as evidenced in the
experiment by Ritchie and co-workers. These may be related to surface
preparation artifacts, but, as in the case of pure *He, there are still
unresolved questions in these experiments. Details of exactly why the
specularity is modified by the presence of a superfluid “He boundary layer,
and in fact, the microscopic process by which momentum is transmitted
across this superfluid are as yet unknown.

In *“He, the experimental and theoretical investigations have not been
as detailed. However, in some respects, the very long mean free paths that
can be realized, together with the possibility of adding *He as an impurity
to the “He as a means of limiting the mean free path imply that *He may
possibly be a fertile testing ground for rarefied gas dynamics. Overall, it is
clear from the two experiments that we have discussed, that there is sub-
stantial agreement between the experiments and the theory as extended to
apply to the non-hydrodynamic regime even though the experiments may
well be in the extreme long mean free path limit.

To summarize, for the quantum fluids, *He and “He and their mixtures,
there is considerable agreement between the experiments and theory.
Theory has advanced to be able to account for the effects of mesoscale sur-
face roughness and the consequences of Andreev scattering at boundaries
to Fermi superfluids. There are some open questions which still need to
be answered. In general, the state of the experimental surfaces is in many
cases not well established, and thus in the future, surface preparation and
characterization must be viewed as a prerequisite for new geometries.
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APPENDIX 1: QUASIPARTICLE RELAXATION RATE OF *He-B

The energy dependent relaxation rate of Bogoliubov quasiparticles can
be written in the form

1 1

Tk —‘[(Ek: T)

_ 1
ENTS)

{IO(Ek’ T) =yl I(E,, T)+I(E,, T)] +3d015(Ey, T)}‘ (203)

with ©(T) =32uh/(nky T)> < W), =1 (T.)-(T./T)? is the normal state
quasiparticle lifetime at the Fermi surface (W is the spin independent nor-
mal state scattering cross section). The pressure dependent quantities 7,
and J, are weighted angular averages of the scattering cross section W, It
has turned out that for all practical purposes, the energy dependence of the
quasiparticle relaxation rate expressed through the dimensionless functions
I(E,, T), n=0,.. 3, can be interpolated well between the exact results of
both a low temperature expansion in kz7/A and an expansion in
(A/kgT.)* near T.. Let us first introduce the abbreviation x =A/k, T. The
dimensionless quasiparticle relaxation rates /,( E,, T) may be decomposed as

<

L(E,T)=JT) +< ) K(T) (204)

The temperature dependent functions J,(T) have the form

3 (1+2x)*°
Jo(T) = i
ol T) 4\/;exp(x)+a0+a,x+a3x“+a3x3
x* (3+x)*°
J(T)= ———exp( —x)
/2r 1ot X
T 10 (205)
x? 1 1
J" T = > >
A7) J2r (3+ )" T exp(x) + {5
3x* 1 1 1
J3(T)—

T2+ 0" b exp(x) + 1+ 5

Here a,= —0.5768, a, =0.2694, a,=0.2900 and a,= —0.0800. The tem-
perature dependent functions K,(7T) are found to be of the form:
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Ky(T)= 9 1 1
P78 Sap (A +x)"exp(x) + by + by x + by x?
5 x> exp(—x)
KI(T)=—
8 /oar (1 +x)'? n?4+x2
i R (206)
3 X exp( —x)
K (T)=
2( ) 3 27z(1_+_x)1/2 %(z)n2+x2
15 x*  exp(—x
KA(T) = el

8 S (1+x)72 (2% +x2)?

where b,=3.4296, b, = —3.2148 and b,=2.3750. The accuracy for the
result for a transport parameter at intermediate temperature evaluated with
Eqgs. (204)—(206) depends on the involved energy average of the quasi-
particle relaxation time. For example it turns out to be better for the
hydrodynamic shear viscosity # (typically a few percent) compared to the
diffusive thermal conductivity (at most 8 %). In view of the relaxation time
approximation described in the text (which is also in the range of a few
percent), the accuracy of (204) can be regarded as quite satisfactory.
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