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Measurements have been made of the normal fluid fraction of superfluid > He-B
at eight different pressures between 0 and 29.2 bar. The minimum temperatures
were such that p,/p was reduced to less than 0.5%. The experiments, carried
out independently at Cornell and Texas A&M Universities, used similar
Andronikashvilli-type torsional oscillators. The results are qualitatively similar,
but show' significant differences due to the use of different temperature stan-
dards. Both sets of results are presented in tabular form. The inconsistencies
in the temperature scales preclude the examination of the results for possible
strong coupling effects.

1. INTRODUCTION. THE NORMAL FRACTION OF
SUPERFLUID *He-B

The superfluid fraction (superfluid density) of liquid *He was first
measured using fourth-sound resonator techniques,'? strengthening the
identification of the extraordinary phases of liquid *He as being ‘“‘super-
fluid.” Later measurements of the superfluid density using vibrating wire
techniques® and parallel plate geometries* exhibited temperature dependen-
ces which differed from those of the earlier experiments in porous media.'?
The anisotropy of the A-phase superfluid density tensor was first observed
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using a torsional oscillator device® patterned on the classic Andronikashvilli
pendulum.® Experiments by Archie et al.” extended these data to normal
fluid fractions p,/p=0.2 and demonstrated that the torsional oscillator
technique offers, in principle, a simple method for measuring the tem-
perature and pressure dependence of the order parameter of the superfluid
B phase of *He. The high precision available from the oscillator measure-
ments should allow a determination of the strong coupling corrections to
the order parameter. Normal density results are also necessary for determin-
ing the dynamic viscosity n from a variety of experiments®® which measure
the kinematic viscosity 7/ p,.

Torsional oscillator measurements of the normal fluid fraction can
provide a valuable intermediate standard for the comparison or calibration
of thermometers at temperatures between 0.3 and 2.7 mK. The measurements
are highly reproducible and provide a particularly sharp indication of the
superfluid transition. The oscillators are simple to construct and operate.
Finite-size effects'® have only a small effect on the normal density results,
although they can dominate measurements of the viscosity at low tem-
peratures.

The precision of these oscillator experiments does not, however, yield
correspondingly precise information on the properties of *He. This short-
coming is due to the current state of disarray of thermometry in the
millikelvin region. These discrepancies have been noted in the literature'’
and have had a significant impact on measurements of the Fermi liquid
parameters (in particular Fj, derived from specific heat data 812y as well
as on attempts to determine the magnitude of the strong coupling
corrections.

This paper presents the results of two independent series of measure-
ments of the normal density as a function of temperature and pressure. The
data extend to normal fractions p,/p <5x107>, allowing good determina-
tion of the “empty cell” period and dissipation of the oscillators. The two
experiments have been difficult to relate to each other, due principally to
differences in the temperature scales. The Texas A&M scale is based on a
lanthanum-diluted cerium magnesium nitrate (LCMN) susceptibility ther-
mometer, calibrated from measurements of the melting curve of *He. The
Cornell thermometry is also based on LCMN susceptibility, but is calibrated
from NMR susceptibility measurements on platinum powder. The separate
results of the two experiments and a set of smooth interpolating functions
for each are presented in tabular form. We wish to draw attention to the
significant consequences of the subtle differences in these temperature scales
and to emphasize the operational difficulties associated with the extrapola-
tion of LCMN thermometers into the submillikelvin region.
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2. CRYOSTATS AND THERMOMETRY

2.1. The Cryostats

The Cornell cryostat”® uses a copper demagnetization stage to cool
~14 cm® of liquid *He to minimum temperatures of ~0.35 mK (at 0 bar
liquid pressure). The coolant bundle comprises 14 moles of 0.30-mm-
diameter copper wire and is precooled to 18.5mK in a 7.7-T field by a
rebuilt SHE model DRP-36 dilution refrigerator. The cryostat warms from
T=0.25T, to T. in ~100 h. The pressure in the liquid 3He cells is sensed
by a capacitive strain gauge located in a liquid nitrogen dewar outside the
cryostat. A simple integrator circuit and a heater in an insulated cell at
room temperature serve to regulate the liquid pressure to within ~1 mbar.

The Texas A&M cryostat' uses a combined PrNis and copper demag-
netization system to attain minimum temperatures of ~0.35 mK and remain
below 1.1 mK for periods exceeding 2 weeks. The coolant bundle includes
0.27 mole PrNis and 2.8 moles Cu, precooled to 8 mK in 7.8 T by an SHE
model 420 dilution refrigerator. The liquid pressure was regulated to within
10 mbar during these runs.

Both research groups observe that the minimum measured temperature
is strongly dependent on the pressure in the liquid *He cell. Relative to the
superfluid transition temperature, however, these minima are essentially
pressure independent ( T,/ T. =0.21 and 0.245 at Cornell and Texas A&M,
respectively).

2.2. The Cornell Temperature Scale

The most sensitive thermometer on the Cornell cryostat was a 70-mg
pill of lanthanum-diluted cerium magnesium nitrate (LCMN). Polycrystal-
line LCMN, grown from a solution of 5% CMN and 95% LMN, was
powdered and packed to 50% packing fraction. The LCMN susceptibility
was monitored by a conventional ac bridge® which used an SHE rf SQUID
magnetometer, operating in a flux-locked loop, as a null detector. An Intel
SBC-80/10 microcomputer monitored the bridge off-balance signal and
automatically adjusted a programmable ratio transformer which controlled
the in-phase portion of the nulling signal. The remaining error signal was
recorded by the computer for subsequent analysis.

The LCMN pill and the bridge excitation and detection coils were
housed in a two-part niobium-titanium can to provide isolation from the
fringing fields of the main demagnetization coil and the heat switch magnet.
The can was perforated at both ends and slots were milled along the sides
of the mating halves to provide maximum thermal contact between the
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LCMN, the liquid *He, and the torsional oscillator. All wiring from the
LCMN cell to the rf SQUID was run through niobium or solder-plated
copper-nickel tubes. A large mu-metal shield was raised around the dewar
during each initial cooldown to 4.2 K, to minimize the field trapped in these
and other superconducting shields.

The LCMN thermometer provides extraordinary sensitivity (<0.1 uK
at 1 mK) and may be continuously measured to the lowest temperatures.
However, the SQUID magnetometer is not isotope-specific, but senses the
total susceptibility of the LCMN and cell; the susceptibility and temperature
dependence of the background may become comparable to that of the
LCMN at temperatures above a few mK. Additionally, the LCMN is
believed to order magnetically at a temperature of ~0.1 mK. These complica-
tions, at high and low temperatures, imply that any claim of Curie-Weiss-
like behavior for the susceptibility measured by an LCMN thermometer
must be verified by comparison to some other, more reliable temperature
scale.

The Cornell LCMN was calibrated against a platinum NMR ther-
mometer.” The platinum powder was obtained from the Helsinki low-
temperature physics group and had previously been calibrated against a
nuclear orientation primary thermometer.'* A cylindrical niobium shield
surrounded the NMR coil and was used to trap a static field of 27 mT.
Automatic control of the pulsed NMR measurements was provided by a
standard controller (model PLM-3, Instruments for Technology, Helsinki,
Finland). The parallel BCD outputs of the controller were connected to the
microcomputer data acquisition system and recorded for subsequent
analysis.

The platinum susceptibility is believed to follow the Curie law with
negligible corrections to T<0.1 mK. In principle, the Curie constant may
be calibrated at a single reference temperature (e.g., T4 on the *He melting
curve). Measurements of the susceptibility then define the platinum tem-
perature scale.

The platinum susceptibility is not, however, a good principal ther-
mometer at low temperatures. The spin-lattice relaxation time becomes
extremely long, limiting the repetition rate of the NMR pulses. The resol-
ution of the PLM controller is limited to ~0.1%. For these reasons, the
platinum is used as a calibration standard for the LCMN, rather than as a
direct source of temperature data.

In practice, the Cornell group obtained the platinum Curie constant
Cp by calibration against temperatures determined from the spin-lattice
relaxation time T, and the Korringa law, T; T =29.9 msec K for this pow-
der.'* The susceptibility and the spin relaxation time were compared over
the temperature range 2 < T < 30 mK. Temperatures obtained from the Curie
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law behavior of the platinum susceptibility were then used to calibrate the

LCMN thermometer.
A Curie-Weiss law was assumed for the LCMN’s susceptibility,

X—Xo=C/(T-A) (1)

The limiting high-temperature susceptibility x, was determined by fitting
the LCMN susceptibility against the platinum spin-lattice relaxation time
T, over a temperature range of 15-30 mK. The values of C and A were
then obtained by fitting the reciprocal of Eq. (1) against the platinum
susceptibility temperature over the range from 15 mK to the lowest tem-
peratures attained. These fits confirmed the Curie-Weiss behavior of this
LCMN thermometer. Figure 1 compares the LCMN susceptibility to the
platinum temperature and demonstrates the stability of the calibration. The
data shown are from the final two demagnetizations of the experimental
run; the calibration line was determined more than 6 months earlier.

L
&
3
x
|
c
§
-
2z
; ___ 06614
: T = Xow - 080 + 0¥
12 | i

0.0 0.5 1.0 1.5 2.0 25 3.0
Inverse Platinum Temperature (mK—1)

Fig. 1. The Cornell temperature scale, showing the reproducibility of the calibration
of the LCMN thermometer. The straight line and the displayed equation are rep-
resentative of a Curie- Weiss susceptibility. The data points show the relative deviation
of the LCMN susceptibility from the platinum temperature for two typical demagnetiz-
ations.
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2.3. The Texas A&M Temperature Scale

The LCMN susceptibility thermometer used in this experiment was
similar to that used at Cornell. This was calibrated'® at and above 1.1 mK
against a *He melting curve thermometer,'® with all melting pressure
measurements referred to the pressure at the superfluid A transition.
The melting curve relation (P—P,, T) was taken from the data of
Halperin et al."’

The melting curve of *He provides an excellent thermometry standard
for use above the solid *He ordering temperature T, = 1.1 mK. Resolution
and reproducibility of ~10 uK are available using simple capactive strain
gauge sensors and audiofrequency measurement electronics. The (P —
Py, T) relation, as established by Halperin et al," is the only truly ther-
modynamic temperature scale in use in the millikelvin region. It is based
on the Clausius-Clapeyron equation and on the temperature T, =2.752 mK
assigned to the superfluid A transition. The melting curve provides three
fixed points, at the A, B, and solid ordering transitions. The chief drawback
of melting curve thermometry is that it loses all sensitivity below the solid
He ordering temperature. The LCMN calibration must therefore be
extrapolated from this point downward.

In the calibration procedure followed at Texas A&M, the high-
temperature balance point x, of the LCMN bridge was recorded at 1.5 K
and was not determined as a low-temperature fitting parameter. The LCMN
susceptibility and the temperature, as derived from the melting curve ther-
mometer, were recorded between 45 and 1.1 mK. Using these calibration
data and the high-temperature balance point x,, it was found that the usual
Curie-Weiss formula was inadequate in describing the temperature depen-
dence of the LCMN susceptibility. This was particularly evident when the
data were plotted as [(x — xo) T]™" vs. 1/ T. This plotting scheme (see Fig.
2) greatly emphasizes the low-temperature behavior of the susceptibility.
On such a figure the Curie-Weiss law would appear as a straight line, of
intercept 1/ C and slope A/ C. To obtain a reasonable fit to the Texas A&M
data between 50 and 1 mK, two correction terms must be added to the
denominator of the Curie- Weiss formula. A better fit, with the same number
of parameters, can be obtained in the form

_ 1+BJT
A T+A +A)/T

X~ Xo (2)

The Texas A&M data presented in this paper were analyzed using this fitted
function, with parameters

Xo=10.004784, Ao =3.3646+0.0045
A, =1.82+0.62, A;=0.934+0.051, B, =1.00+0.20
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Fig. 2. The Texas A&M temperature scale, showing the calibration of the LCMN
susceptibility thermometer from the Halperin (p, T) relation on the 3He melting curve.
The fitted line represents a Curie-Weiss susceptibility, with two additional correction
terms.

This fit line is plotted with the data in Fig. 2. We defer a comparison of
the Cornell and Texas A&M temperature scales to Section 4.

3. TORSIONAL OSCILLATORS AND HYDRODYNAMICS

3.1. The Torsional Oscillators

The oscillators used in these experiments were of a very standard
design,>”"®" illustrated in Fig. 3. Each cell consisted of a thin, disk-shaped
cavity for the *He sample, surrounded by walls of Stycast 1266 epoxy
(Emerson and Cuming, Canton, Massachusetts). The interior of the Cornell
(Texas A&M) cell was 0.8352 (1.0668) cm in diameter by ~90 (135) um
high. The outer dimensions of the epoxy were 1.27 (1.52) cm diameter by
0.39 (0.79) cm high in the center. The oscillator head was calculated to
have, with the electrode vanes included, a moment of inertia of 0.111
(0.405) g cm>. It was supported on a hollow beryllium-copper torsion rod,
0.051 (0.061) cm i.d., 0.064 (0.068) cm o.d., 0.381 (0.508) cm long, which
also served as the fill line for the cell and the thermal link to the demagnetiz-
ation stage heat exchanger and the thermometers. The torsion constant for
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I‘/O-5 ¢ & Heat Exchanger

Fig. 3. A torsional oscillator. The cell body and capacitor elec-
trodes are made of Stycast 1266 epoxy. The combination torsion
rod and fill line is machined from beryllium-copper. The oscilla-
tions are driven and detected capacitively by fixed electrodes
mounted on the cryostat and companion plates attached to the
oscillator head.

Be-Cu is ~5 X 10" dynes/cm?; the resonant frequency of the oscillator was
~904 (389) Hz and the low-temperature empty cell Q was >4 x 10° (1x10°).

Motion of the oscillator was driven and detected capacitively using a
simple feedback circuit” which tracks the resonant frequency and regulates
the amplitude. Early measurements at constant drive showed significant
nonlinearities, especially at large amplitudes. All data were therefore taken
at a constant amplitude of oscillation, with the drive level recorded as a
measure of the dissipation in the cell.

3.2. Description of Hydrodynamics

The dissipative and inertial terms governing the behavior of a torsional
oscillator are determined by the ratio of the cell height h to the viscous
penetration depth &=(2n/pw)">. The viscous penetration depth is a
measure of the distance over which the shear waves originating at the walls
of the oscillator penetrate into the liquid. Here 7 is the viscosity, p is the
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fluid density (replaced by p, in the superfluid), and o is the angular
frequency of oscillation. Figure 4 illustrates the variation of the period and
dissipation of an oscillator as the temperature is decreased from T = 40 mK
to the superfluid transition and on through the superfluid phases to the
minimum T =0.5 mK.

In the normal liquid at high temperatures the viscosity and viscous
penetration depth are small. The bulk of the fluid is therefore decoupled
from the cell and the dissipation and the period approach their empty-cell
values. As the temperature is reduced, the viscosity rises, resulting in an
increased penetration depth. This couples more fluid to the walls of the

10 29.2 bar 7
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Fig. 4. A sample drive vs. period curve for the torsional oscillator. The dissipation
maxima in the normal and superfluid phases and the features at T, and T,p and
as T -0 are clearly seen.
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cell, increasing both the period of oscillation and the dissipation. When the
viscous penetration depth approaches half the height of the cell (h/ 8 ~2.25),
the drive passes through a maximum. Here the shear waves in the fluid,
propagating from the upper and lower cell walls toward the center, begin
to overlap substantially. Below this temperature the fluid becomes increas-
ingly well-locked to the cell and the dissipation decreases while the period
continues to rise. At the transition temperature the fluid is almost completely
locked to the walls of the cell.

Upon entering the superfluid phase, only the normal fraction is coupled
to the walls of the oscillator. As the temperature is reduced just below T,
the viscosity decreases more rapidly than the normal density. The viscous
penetration depth therefore drops, the normal fluid unlocks slightly, and
the dissipation rises. The monotonic decrease of the period reflects the
development of the superfluid fraction, which is stationary and therefore
does not contribute to the inertia of the oscillator.

In the A phase, the normal fluid density’® and viscosity® are anisotropic.
The values sampled by the oscillator are strongly dependent on the specific
textures. These will depend on the cell height, the amplitude of oscillation,
and the strength and orientation of any stray magnetic fields. Because of
these uncontrolled textural effects, we have not analyzed any A-phase data.
We note that a common feature on both cryostats at all pressures above
22 bar is a discontinuity in the period and a large jump in the dissipation
at the AB transition.

In the superfluid B phase, the order parameter, and therefore the normal
density and viscosity, are isotropic. Textural variations are thus absent and
the density results should be independent of the details of the oscillator
geometry. A dissipation maximum is seen, but, because of the rapidly
changing p,, does not provide a simple relation between the viscous penetra-
tion depth and the cell height. As the temperature decreases toward zero
the normal density decreases to zero and all of the fluid decouples from
the body of the oscillator. In this limit, the drive approaches the “nuisance”
drive D, and the period drops to the empty-cell value P(0).

3.3. Hydrodynamic Equations

In this section we outline the hydrodynamic analysis used to derive
the normal fluid density from our measurements of the oscillator period
and dissipation. More complete treatments can be found in Ref. 7. An
appropriate starting point is the solution to the problem of the motion of
a viscous fluid between parallel oscillating plates.?’ This result is applied
to the torsional oscillator, taking into account the variation of the surface
velocity with radius. Neglecting edge effects and slip, one has that the fluid
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exerts a torque on the oscillator
T; = wR*0kn tan (hk/2) (3)

where R is the radius of the cell, § = iwf,e™" is the angular velocity, 7 is
the viscosity, h is the height of the cell, and k=(1+1i)/8, where 6=
(2m/pw)"/? is the viscous penetration depth. Separating the torque into its
real and imaginary parts gives

T;=pB,0-B,0 (4)
where

pn . 1 sin x—sinh x
A wp 7 x cos x+cosh x )

is the coefficient of the velocity-dependent damping,
pn , 1 sinx+sinh x

==[—— 6
2 p "x cos x+cosh x (6)

is the inertia of the fluid entrained by the motion of the walls,

is the total fluid moment of inertia, and we have defined x = h/ 8, the ratio
of the cell height to the viscous penetration depth. The damping and inertia
may be related to the measurable parameters P(T), the period, and QM)
the dissipation, by solving the equation of motion for the oscillator. The
result for the dissipation is

N=""r="FL - — 8
Q (D) wl, p I, x cosx+coshx (®)

and the period of the oscillator is given by

1/2
P(T)= 2#(%)

L\"? . I; 1 sin x+sinh x\"/?
=27,<.g) (Hp__f_w> ©)
K p I, x cos x+cosh x

where K is the torsion constant for the oscillator. The ratio of I, to I,, the
ratio of the moment of inertia of the fluid to that of the empty cell, can be
simply related to P(T =0), the period with all the fluid decoupled, and
P(T = T,), the period with all the fluid viscously locked to the cell:

I, P(T.)*=P(0)* _2[P(T.)—P(0)]
I, P0O? P(0)

(10)
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Using Egs. (8)-(10), we form the function

R(x) = Q'P(0)*>  sinh x—sin x
" P(T)>-P(0)*> sinh x+sin x

(11)

which may be inverted to calculate x(T) from the measured quantities
P(T), Q7'(T). Once x(T) is determined, the normal density can be calcu-
lated from

pn_ P(T)*~P(0)* x(cos x+cosh x)

= 12
p P(T.)?>-P(0)*> sinx+sinh x (12)
which reduces, in the limits I;« I, and x <1, to
pu_ P(T)—P(0) [ xt s ]
B 14240 13
o P(T)-P) | T30 O (13)

The viscosity may subsequently be determined from the viscous penetration
depth and x,

n=3p.w8’,  8=h/x (14)

As discussed previously, changes in the oscillator period in the super-
fluid B phase are chiefly governed by the variation of the normal fraction
with temperature. Inverting this relationship, we find that the normal fluid
density varies in proportion to the period, with corrections due to the finite
unlocking of the fluid from the walls of the cell. These corrections, the
terms in x in Egs. (12) and (13), vary, for T/T.=0.5, from less than 1%
at zero pressure to ~5% at 29 bar. At lower temperatures, as the density
of normal excitations approaches zero, the fluid unlocks more fully from
the cell and the effect of the hydrodynamic correction terms in Eq. (12)
can exceed 30%. The temperature dependence of the unlocking parameter
x is illustrated in Fig. 5 at several experimental pressures.

An additional complication which can arise in analyzing torsional
oscillator results at the lowest temperatures and pressures is that the viscous
relaxation time 7, can approach the characteristic period of the oscillator.
In this limit the system would pass out of the hydrodynamic regime and a
collisionless transport equation would have to be developed. Fortunately,
at the temperatures attained in these experiments, the collisionless limit,
wT>1, was never attained.

3.4. Oscillator Calibrations

The parameters measured during the course of a torsional oscillator
experiment are the resonant period and the drive required to run the cell
at constant amplitude. The analysis in Section 3.3 is couched in terms of
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Fig. 5. The viscous unlocking parameter x = h/8 (the ratio of the cell height to the
viscous penetration depth) vs. T/T,. At low pressures and high temperatures x is
small and the normal fluid fraction is nearly equal to the period shift of the oscillator,
normalized by the measured P(0) and P(T,) values.

the period and the *He fluid dissipation Q7. The dissipation and drive are
simply related, Qgua D — D,, where D, is the nuisance drive, related to
the intrinsic dissipation in the beryllium-copper torsion rod and the epoxy
cell head. To obtain the constant of proportionality, one must, at a single
temperature, separately measure the Q of the oscillator and the drive
required to maintain the standard amplitude. The Q may be measured in
any of several ways. One is to observe the ringdown time of the undriven
oscillator. Another is to record the oscillator amplitude as a function of
frequency while sweeping through the resonance at constant drive. A third
is to use period data and Eq. (11) at the dissipation maximum in the normal
fluid, where x = 2.254 and R(x)=0.7153. A comparison of these techniques
at several pressures gives results identical to within ~2.5%.

In earlier experiments>'® the pressure-dependent empty-cell period
P(0) had to be determined by fitting to the drive as a function of the period
in the normal Fermi liquid. To obtain P(0), the fit was extrapolated to its
intercept at zero drive and “infinite” temperature. This technique was subject
to a systematic error, arising from the observable temperature dependence
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of the period of the empty oscillators. In the present experiments we attained
temperatures sufficiently low that the normal fluid fraction has decayed
nearly to zero. Consequently, the empty-cell period may be determined
from a fit to our lowest temperature data. The selection of the correct
“empty-cell” parameters is crucial to the determination of the normal density
at low temperatures. Small errors in P(0) (and in D,) will introduce much
larger systematic errors in p,/p.

At the lowest temperatures the relation between the normal fluid density
and the reduced temperature t = T/ T, is particularly simple,

pn/poct2eA! (15)

Thus, if we assume that all variations in the period are due to changes in
the normal density, we can determine P(0) by fitting to

P(T)=P(0)+ At 27" <035 (16)

with adjustable parameters P(0), A, and A. The quality of this fit, shown
in Fig. 6, is comparable to that which determines P(T,); together they give
P(T.)— P(0) to ~0.05%.

. r Fit to Determine P(T=0) ]

P(t) = P(0) + A t™1/2 ¢~/

Y
N
|

29.2 bar y

Period Shift (nsec)
0

E

1 1 1 1
0.20 0.22 0.24 0.26 0.28 0.30
Temperature (t = T/T.)

Fig. 6. Result of determining the empty-cell period by fitting to the cell period in the
T -0 limit.
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The nuisance drive D, of the Texas A&M cell was obtained by a direct
measurement during the first demagnetization of the experimental series,
before any *He was admitted to the sample volume. The resonant Q of the
cell increased as the temperature was reduced, reaching a maximum value
Q.>1x10° This Q,, together with the proportionality constant described
previously, determined the nuisance drive used in analyzing all of the Texas
A&M data.

The nuisance drive for the Cornell cell was obtained from extrapola-
tions of the drive toward zero temperature at each experimental pressure.
These extrapolations were constrained by monitoring their effect on the
derived viscous penetration depth and normal density. In the low-
temperature limit, the density of normal excitations decays exponentially
to zero and all of the fluid decouples from the body of the cell. The residual
drive voltage therefore corresponds to the “nuisance” dissipation of the
torsion rod and epoxy head. The values found for D, for the Cornell
experiment were relatively pressure independent. Maximum values
measured for the Q of the Cornell oscillator were of the order of 4 X 10°.
The higher Q of the Texas oscillator may in part be due to better vibration
isolation than in the Cornell cryostat.

4. RESULTS

4.1. The Normal Fraction

Over the course of the two experiments, a data set consisting of the
oscillator period, drive voltage, LCMN susceptibility, and, at Cornell, the
platinum susceptibility was acquired at each liquid *He pressure. The
Cornell data were taken while allowing the cryostat to warm relatively
slowly and at a uniform rate. A time of approximately 100 h was spent in
warming from the minimum temperature to the superfluid transition at each
pressure. The warmup rate could be controlled at the higher temperatures
by adjusting the power to a resistance wire heater attached to the experi-
mental platform.

At Texas A&M the data acquisition period spanned 4-10 days at each
pressure. At night the cryostat was allowed to warm very slowly under its
low ambient heat leak. During each day the warmup rate was increased by
slowly ramping the magnetic field of the demagnetization solenoid. The
day and night warming rates differed by nearly an order of magnitude; no
corresponding offsets were observable in the data. The uniform warming
rate for the Cornell cryostat was intermediate between the fast and slow
rates at Texas A&M. Since the cells and thermometers are of similar design,
no significant disequilibrium effects are expected.
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The raw period, drive, and LCMN susceptibility data were analyzed
to obtain values for the normal density, viscosity, and temperature, accord-
ing to the procedures outlined in Sections 2 and 3. We have found that the
independently determined Cornell and Texas A&M normal density results
exhibit a common pressure dependence. In Fig. 7, we plot the derived values
of p,/p as a function of the reduced temperature t =T/ T..

For constant T/T, we find that the normal density is an increasing
function of pressure. This behavior is due in part to the pressure dependence
of the molecular field effects, which enter via the Fermi liquid parameter
F3. The magnitude of the superfluid gap parameter A may also be subject
to temperature- and pressure-dependent corrections due to strong coupling
effects. In the weak coupling BCS limit, the temperature dependence of the
order parameter enters into the normal density solely through the Yosida
function Y(t). Thus,?

pe (I+1F)Y(T)

P 1+IFY(T) a7)

We have found that the majority of the pressure dependence shown in
Fig. 7 may be attributed to the pressure dependence of the Fermi liquid
parameter F3.

T T T T T
1.0 |-
29, 20, 10, 5, O bar /
Q 0.8 -
3
2 0.6 -
7
c
®
(=]
s 04 -
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Zz
0.2 | -
0.0 |- -
1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Temperature T/T.

Fig. 7. The temperature and pressure dependence of the normal fluid density. When
plotted against T/ T, results for higher pressures lie above those from lower pressures.



The Normal Fraction of Superfluid *He-B . 353
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Fig. 8. Normal density results plotted against the Cornell and Texas A&M tem-
perature scales. The Texas A&M data are, at each pressure, to the right of the
Cornell data.

At this juncture it is useful to compare the results of our two experi-
ments, before pursuing any further analysis of pressure- and temperature-
dependent effects. Figure 8 displays the normal fluid fraction as a function
of the absolute temperature at four pressures common to both experiments.
It is quite evident that our data do not coincide. The Texas A&M data lie,
at each pressure and normal density, at a higher apparent temperature than
the Cornell data. This lack of correspondence is not entirely unexpected,
since our independent LCMN temperature scales are calibrated from funda-
mentally different thermometric devices.

4.2. Comparison of Temperature Scales

The simplest comparison between the temperature scales is the tradi-
tional comparison of the superfluid transition temperatures T, at several
common pressures. The ratios of the transition temperatures are plotted as
open diamonds in Fig. 9. As the ratios vary from less than to greater than
unity, neither a simple temperature offset nor a multiplicative factor alone
will suffice to bring the scales into agreement. Because a comparison of T,
values is possible over only a limited region in temperature (between ~1
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Fig. 9. A comparison of the Cornell and Texas A&M temperature scales, using p,,/p
as a transfer standard. The open diamonds mark the superfluid transition temperatures.
All of the data shown were taken in the superfluid B phase.

and ~2.8 mK) and since there are only seven pressures common to both
data sets, a direct temperature scale conversion based only on the (T,, p)
points will be of questionable value when extrapolated to our minimum
temperatures.

A comparison of the p,/p data from our two experiments introduces
more rigorous constraints on the temperature scales. This comparison can
be extended to temperatures well below 1 mK and will expose any variation
of the thermometry with pressure. Therefore, for each common pressure
and value of p,/p, we have plotted the ratio of the Cornell temperature to
the Texas temperature, against the Cornell temperature (see Fig. 9). In
principle, these ratios and the ratios of the transition temperatures, plotted
earlier, should all fall on a single pressure-independent curve. In fact, there
are significant discrepancies at the lowest temperatures and, at the higher
pressures, near T,.

In the low-temperature limit, the diminishing slope of the p,/p vs.
T/ T, relation will cause small systematic errors in the normal densities to
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appear as large offsets in the temperature ratios. These errors can be easily
introduced during the determination of the empty-cell periods and the
nuisance drives of the oscillators, and are probably responsible for the
pressure dependence of the temperature ratios in this region. In addition,
the Texas A&M scale, at temperatures below the solid transition on the
melting curve, is an extrapolation from a higher temperature calibration.
The functional form assumed for this extrapolation will govern the shape
of the temperature ratio plot below 1 mK.

In a narrow intermediate region, between ~0.8 and ~1.5mK, the
temperature ratios determined from the comparison of normal density
results do fall on a single pressure-independent line. This line is in good
agreement with the points defined by the ratios of the transition tem-
peratures, and presumably represents the true difference between the Cornell
and Texas A&M temperature scales above 1 mK.

Above 1.5mK, and for liquid pressures of 15bar and above, the
temperature ratio curves show a significant pressure dependence. This
behavior may be indicative of thermal gradients between the torsional
oscillators and the thermometers. The thermal time constant defined by the
heat capacity of the helium in the cell and the thermal impedance of the
narrow torsion tube fill line should increase with temperature and pressure,
but should not exceed 200 sec in the vicinity of the A transition at the
highest pressures. Comparing the time constants to-the warmup rates, one
obtains that the temperature error associated with a particular value of p,/p
should be on the order of a few wK, approximately an order of magnitude
smaller than that needed to account for the pressure dependence of the
temperature ratios.

Also above 1.5 mK, the main magnet on the Texas A&M cryostat was
energized to a field of greater than 1T, in order to warm up the nuclear
stage. This magnetic field may have coupled stray vibrations in the cryostat
to parasitic modes of the torsional oscillator, thus altering the dissipation
of the pendulum and the apparent normal density. Also, in general, the
derivative of the normal density with respect to the absolute temperature
decreases as the temperature and pressure increase. The effect of this reduced
slope on Fig. 9 will be an exaggeration of the systematic temperature
differences in this region relative to comparable differences between 0.8 and
1.5 mK.

We have found no simple explanation for the apparent systematic
pressure dependence of the temperature ratios at our lowest and highest
temperatures. Barring such an explanation, we cannot correct for the depen-
dence, and therefore have been unable to develop any simple function
which might relate our two temperature scales.
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4.3. Smoothed Results and Fits

The unresolved systematic differences between our temperature scales
are such that any attempts to analyze these normal density results for strong
coupling effects and their possible pressure or temperature dependence will
be inappropriate. However, since these are presently the most complete sets
of p,/p measurements available, we have provided three different routes
of access to the results.

The smoothed data in Table I are derived from piecewise linear and
quadratic fits to the normal density p,/p as a function of the reduced
temperature ¢t = T/ T,. In particular, the Cornell value for p,/p at 0 bar and
t=0.5 was obtained from a linear fit to the Cornell 0-bar data over the
region 0.49=<t¢=0.51. Values for reduced temperatures T/ T, <0.43 were
obtained from quadratic fits, since the curvature of p,/p in this region
introduces significant errors if linear smoothing is attempted. Quadratic fits
for T/T.>0.43 tended to reproduce the noise in the data, rather than the
underlying curvature of the normal density. Linear smoothing was therefore
used at these higher temperatures. Gaps in the table correspond to regions
in which the data were too sparse to permit reasonable smoothing. This
table is the most accurate compact representation of our results.

A less accurate functional representation is achievable via the fit
coefficients listed at the bottom of Table I. We have extracted the dominant
low-temperature form of the Yosida function,?**

Y(t)~3.33t72e/! (18)

and fixed the energy gap at A=1.1A5¢5(0) =1.94. This low-temperature
form of the Yosida function is then dressed by the pressure-dependent
Fermi liquid corrections, using values for F; from Greywall.'”> A final
multiplication by a rational function yields

pn_ (1+3F)(3.33t7%e™) 1+ At + Ay (19)
p 1+3F5(3.33t7%e™*") 1+ B,t+ B,t*

and introduces enough adjustable parameters (A,, A,, B,, and B,) to keep
the deviation (p,/p)daa—(Pn/p)s below +0.005 at all temperatures and
pressures. An examination of the fitted rational function coefficients in
Table I shows no systematic variation with pressure; most of the pressure
dependence of the normal density is due to Fermi liquid effects.

*Note that a better approximation, valid to higher T/T,, is provided in the Appendix
to Ref. 9.
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TABLE 1
Smoothed Values of p,/p at Selected Temperatures and all

Experimental Pressures®

p/pn
(0.00, (0.00, (2.18, (4.98, (5.10,
1.059) 1.108) 1.415) 1.676) 1.721)
T/T, Cornell Texas Texas Cornell Texas
0.22
0.24 0.0046
0.26 0.0090 0.0095
0.28 0.0198 0.0192 0.0167 0.0161
0.30 0.0303 0.0288 0.0287 0.0259
0.32 0.0438 0.0415 0.0447 0.0387
0.34 0.0489 0.0589 0.0651 0.0557
0.36 0.0682 0.0898 0.0761
0.38 0.0918 0.1000 0.1008 0.1186 0.1014
0.40 0.1186 0.1249 0.1274 0.1510 0.1296
0.42 0.1480 0.1526 0.1865 0.1615
0.44 0.1809 0.1832 0.1881 0.2242 0.1956
0.46 0.2159 0.2136 0.2224 0.2637 0.2318
0.48 0.2526 0.2483 0.2584 0.3043 0.2703
0.50 0.2906 0.2852 0.2961 0.3453 0.3096
0.52 0.3295 0.3226 0.3860 0.3492
0.54 0.3687 0.3583 0.4262 0.3892
0.56 0.4021 0.3951 0.4655 0.4287
0.58 0.4412 0.4323 0.5037 0.4679
0.60 0.4796 0.4697 0.5406 0.5059
0.62 0.5174 0.5051 0.5761 0.5427
0.64 0.5540 0.5408 0.6102 0.5786
0.66 0.5893 0.5755 0.6428 0.6129
0.68 0.6234 0.6092 0.6738 0.6456
0.70 0.6561 0.6410 0.7037 0.6767
0.72 0.6875 0.6733 0.7320 0.7067
0.74 0.7175 0.7024 0.7586 0.7349
0.76 0.7463 0.7321 0.7839
0.78 0.7735 0.7603 0.8077
0.80 0.7994 0.7897 0.8302
0.82 0.8239 0.8154 0.8516
0.84 0.8474 0.8437 0.8719
0.86 0.8700 0.8652 0.8911
0.88 0.8913 0.8847 0.9093 0.8990
0.90 09115 0.9062 0.9133 0.9267 0.9180
0.92 0.9311 0.9267 0.9321 0.9432 0.9368
0.94 0.9498 0.9462 0.9500 0.9587
0.96 0.9674 0.9646 0.9675 0.9735 0.9696
0.98 0.9844 0.9825 0.9840 0.9870 0.9853
1.00 1.0000 1.0000 1.0000 1.0000 1.0000
H 5.270 5.270 6.091 7.007 7.044
A, —5.546 —1.456 -3.139 —7.047 —5.526
A, 11.496 3.028 5.984 14.787 11.415
B, —4.493 —1.542 —2.744 -5.997 —4.467
B, 8.466 2.386 4.573 11.574 8.665
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Table 1. Continued

p/Pn

(9.96, (10.00, (15.00, (15.40, (19.96, (20.5,

2.070) 2.079) 2.334) 2.348) 2.508) 2.534)

T/T. Cornell Texas Cornell Texas Texas Cornell
0.22 0.0045 0.0036
0.24 0.0066 0.0048 0.0099 0.0046 0.0050 0.0078
0.26 0.0125 0.0090 0.0153 0.0090 0.0094 0.0151
0.28 0.0223 0.0153 0.0254 0.0155 0.0162 0.0265
0.30 0.0361 0.0252 0.0394 0.0257 0.0270 0.0426
0.32 0.0534 0.0389 0.0597 0.0398 0.0418 0.0637
0.34 0.0765 0.0565 0.0855 0.0584 0.0615 0.0894
0.36 0.1041 0.0787 0.1136 0.0818 0.0858 0.1209
0.38 0.1360 0.1044 0.1470 0.1094 0.1148 0.1568
0.40 0.1714 0.1349 0.1841 0.1410 0.1486 0.1960
0.42 0.2094 0.1687 0.2237 0.1765 0.1853 0.2378
0.44 0.2497 0.2503 0.2655 0.2153 0.2253 0.2816
0.46 0.2912 0.2435 0.3079 0.2558 0.2671 0.3268
0.48 0.3331 0.2841 0.3510 0.2968 0.3101 0.3717
0.50 0.3752 0.3249 0.3923 0.3388 0.3535 0.4161
0.52 0.4164 0.3662 0.4334 0.3815 0.3964 0.4594
0.54 0.4570 0.4072 0.4741 0.4231 0.4390 0.5008
0.56 0.4964 0.4478 0.5137 0.4635 0.4799 0.5410
0.58 0.5342 0.4871 0.5514 0.5032 0.5188 0.5794
0.60 0.5705 0.5252 0.5875 0.5410 0.5563 0.6160
0.62 0.6052 0.5621 0.6218 0.5774 0.5918 0.6498
0.64 0.6383 0.5972 0.6542 0.6117 0.6250 0.6819
0.66 0.6695 0.6309 0.6849 0.6442 0.6586 0.7119
0.68 0.6994 0.6628 0.7140 0.6749 0.6861 0.7397
0.70 0.7275 0.6938 0.7410 0.7042 0.7136 0.7657
0.72 0.7539 0.7232 0.7665 0.7315 0.7398 0.7902
0.74 0.7788 0.7496 0.7903 0.7576 0.7648 0.8129
0.76 0.8020 0.7751 0.8127 0.7817 0.7879 0.8341
0.78 0.8243 0.7998 0.8346 0.8050 0.8097 0.8538
0.80 0.8456 0.8226 0.8546 0.8264 0.8306 0.8727
0.82 0.8655 0.8446 0.8733 0.8485 0.8504 0.8897
0.84 0.8840 0.8654 0.8909 0.8691 0.8692 0.9055
0.86 0.9019 0.8852 0.9078 0.8859 0.8872 0.9204
0.88 0.9188 0.9037 0.9235 0.9038 0.9046 0.9344
0.90 0.9355 0.9216 0.9380 0.9206 0.9212 0.9474
0.92 0.9488 0.9384 0.9516 0.9371 0.9373 0.9597
0.94 0.9625 0.9546 0.9646 0.9529 0.9526 0.9712
0.96 0.9762 0.9700 0.9770 0.9675 0.9678 0.9819
0.98 0.9884 0.9850 0.9890 0.9843 0.9835 0.9914
1.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F3; 8.406 8.417 9.710 9.811 10.908 11.028

A, —6.125 —6.297 -3.312 -6.931 -7.210 -4.901

T A, 12.558 12.863 7.286 14.774 15.438 8.427
B, —5.439 —5.084 -3.230 —5.532 ~-5.819 —4.552

B, 10.213 9.979 6.193 11.618 12.363 7.215

“For each data set the values in parentheses are, respectively, the pressure p in bar and the
temperature T, in mK. Results from the independent Texas A&M and Cornell measurements
are presented as derived, and have not been brought into agreement. Gaps in the table



Table 1. Continued

P/ Pn
(24.13, (2447, (247, (29.15, (29.2,
2.636) 2.612) 2.654) 2.680) 2.718)

T/T, Cornell Texas Cornell Texas Cornell
0.22 0.0019 0.0032 0.0032
0.24 0.0035 0.0051 0.0072 0.0052 0.0076
0.26 0.0076 0.0095 0.0149 0.0091 0.0153
0.28 0.0151 0.0165 0.0266 0.0161 0.0275
0.30 0.0272 0.0273 0.0432 0.0272 0.0445
0.32 0.0436 0.0427 0.0648 0.0427 0.0668
0.34 0.0653 0.0628 0.0914 0.0627 0.0946
0.36 0.0924 0.0880 0.1234 0.0883 0.1279
0.38 0.1245 0.1183 0.1593 0.1190 0.1663
0.40 0.1608 0.1529 0.1984 0.1543 0.2085
0.42 0.2005 0.1907 0.2403 0.1928 0.2541
0.44 0.2430 0.2319 0.2837 0.2355 0.3012
0.46 0.2870 0.2750 0.3270 0.2793 0.3495
0.48 0.3322 0.3183 0.3711 0.3240 0.3980
0.50 0.3776 0.3629 0.4149 0.3692 0.4462
0.52 0.4218 0.4062 0.4147 0.4916
0.54 0.4643 0.4484 0.4563 0.5354
0.56 0.5048 0.4897 0.4961 0.5767
0.58 0.5448 0.5283 0.5347 0.6154
0.60 0.5826 0.5650 0.5705 0.6522
0.62 0.6171 0.5986 0.6036 0.6858
0.64 0.6521 0.6300 0.6345 0.7167
0.66 0.6827 0.6602 0.6631 0.7448
0.68 0.7106 0.6885 0.6898 0.7708
0.70 0.7386 0.7150 0.7590 0.7146 0.7948
0.72 0.7640 0.7399 0.7838 0.7379 0.8173
0.74 0.7874 0.7630 0.8059 0.7599 0.8380
0.76 0.8100 0.7851 0.8268 0.7805 0.8574
0.78 0.8320 0.8064 0.8470 0.8001 0.8750
0.80 0.8515 0.8265 0.8657 0.8190 0.8906
0.82 0.8694 0.8455 0.8828 0.8375 0.9053
0.84 0.8865 0.8636 0.8993 0.8555 0.9193
0.86 0.9025 0.8814 0.9141 0.8728

0.88 0.9174 0.8984 0.9284

0.90 0.9315 0.9149 0.9423

0.92 0.9447 0.9311 0.9552

0.94 0.9568 0.9478

0.96 0.9689

0.98

1.00

F3 11.830 11.910 11.963 13.002 13.002 13.013
A, -5.954 —6.750 -7.141 —6.305 —4.520
A, 11.581 13.179 16.164 11.070 6.499

B, —5.406 -5.720 —6.282 —5.596 —4.273

B, 9.839 10.971 13.511 9.613 5.738

correspond to regions in which the data were too sparse to permit reasonable smoothing.
Parameters obtained by fitting Eq. (19) to each data set are presented below the smoothed
results for that data set.
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Finally, we have compiled all of our raw period, drive, and LCMN
susceptibility data and our derived values for the normal fluid density and
temperature onto one magnetic tape. Copies of this tape, at 1600 bpi and
in ANSI standard format, may be obtained from the authors.

5. CONCLUSION

In this paper we have described two comprehensive sets of measure-
ments of the temperature and pressure dependence of the normal fluid
fraction of superfluid *He-B. Our results span pressures from 0 to 29 bar
and values of p,/p from less than 0.005 to unity. The results are presented
in tabular and functional form, to allow for their use in the analysis of
other hydrodynamic experiments.

The two sets of results are fundamentally inconsistent. The majority
of this inconsistency is due to a pressure-independent difference in the
temperature scales upon which the measurements are based. Additional,
pressure-dependent discrepancies are seen above 1.5 mK, and may be due
to complex thermal offsets arising between the thermometers and the tor-
sional pendulums. These differences between the results were exposed by
using values of p,/p as a transfer parameter for comparing the two tem-
perature scales, and would not have been apparent except through such a
comparison.

As a consequence of these differences, primarily thermometric, we have
not attempted to extract information about pressure- and temperature-
dependent corrections to the BCS weak coupling theory from our normal
density results. It is our opinion that, even should there have been no
discrepancies in the temperature scales, the present state of thermometry
at 3mK and below is such that the analysis of normal density results for
these effects cannot be justified. We suggest that, with the advent of better
very low-temperature thermometry, measurements of the normal fluid frac-
tion will play a prominent role in the transfer of temperature scales between
laboratories and in increasing our understanding of the strong coupling
effects in superfluid *He.
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