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H.099 EXCITATIONS OBSERVED IN THIN Uge FILIMS.*

D. J. Bishop, J. M. Parpia, J. D. Reppy,

Laboratory of Atomic and Solid State Physics, and Materials
Science Center, Cornell University, Ithaca, N.Y. 14853

Using a technique developed by Hall and Reppyl we have used
third sound to investigate thin 'He films adsorbed on Vycor

glass.
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Third sound resonances were observed for coverages ranging
from 1.51 atomic layers to 2.7 atomic layers at temperatures
ranging from O.23°K to 1.25°K.

By analyzing the motion of the cavity we were able to
calculate directly the actual superfluid masses of the thin

He films. The second figure shows the superfluid masses
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plotfed against coverage. Extrapolation of the data suggests
that at a non-zero coverage (1.41 atomic layers) the super-
fluid mass is zero. This is further evidence of a "frozen out
layer" of 4He which does not participate in superfluidity but
provides a favorable substrate for superflow.
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Figure 2. Plot of superfluid mass vs. coverage. The intercept
corresponds to 1.41 atomic layers of He.

Using the relation:

QS(T)/D = (C3(T)/C3(O)
we have calculated ps/p vs. T for our thin films. The low
temperature regions were found to be phonon dominated with a
T2 temperature dependence. The observed T2 dependence (Fig.3)
is what one would expect for phonons in cylindrical channels,’
which is a plausible model for Vycor glass. The fourth sound
(full pore) data is also shown in Fig. 3 and as predicted ’
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it also shows a T2 phonon dominated regime.
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Figure 3. Pq /p vs. T2 at low temperatures. This graph shows
the low temperature behav1or of p /pfor films and filled
bores in Vycor glass.

At high temperatures the departure from a T dependence
was treated as a roton type excitation. By taking our P /o
data and subtracting off the phonon contribution we were abie
to fit the remainder to obtain roton energy gaps. Our data;ﬁ
gave energy gaps for all coverages in the range 4-6°K.  These
values are in rough agreement with those calculated by Padmore
using a Feynmann-Cohen technique. These values are approxi-
mately the same as that obtained for the full pore case
(5. 85 K) but are substantlally lower than the values obtained
for bulk Helium (8. 65° K) at saturated vapor pressure. Within
experimental error the roton energy gaps appear to be indepen-
dent of film thickness supporting Padmore's contention that
there exist two dimensional rotons which dominate the behavior
of ps/p in the pores in this temperature region.

in Fig. 4 we show our data for the entire temperature
range investigated. The theoretical curves are calculated
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using a combination of a T2 phonon term and a roton term. At
higher temperatures quasiparticle interactions which have been
ignored presumably become important and worsen the agreement
with the data.
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Figure 4. ps/p vs. T for the entire temperature range.

In summary we have observed third sound in Vycor glass
using a new technique. Our data supports the idea of a "frozen
out layer" of "He which forms a favorable substrate for super-
flow and the existence of phonon and roton excitations in the
thin 4He films, but with a roton gap changed by the influence
of the walls.
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