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Supplementary Note 1: Calculation of τηT
2 and other parameters

Supplementary Figure 1: Conversion from T ∗ to TPLTS . Values of T ∗

c [1,2] plotted against values

of Tc on the PLTS scale3, 4.

To arrive at an estimate for the magnitude of the fluctuation contribution to the Q, we need to

determine various pressure dependent quantities for liquid 3He. We start with the determination

of τηT
2, the quasiparticle scattering time associated with the viscosity. The Fermi liquid viscosity

was studied by Parpia and co-workers1, 2. The temperature scale used in that work needs to be

converted to the PLTS scale3. We plot the values of T ∗

c against the values of Tc in the PLTS scale4

in Supplementary Figure 1. The conversion requires a linear scaling with a small offset, yielding

TPLTS = 0.833T ∗ + 0.034. The pressure dependent viscosity coefficients ηT 2 [poise-mK2] listed

in Ref[1] are then converted to their values with the PLTS scale.
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Supplementary Figure 2: ηT 2 vs Pressure. Values of the viscosity coefficient1 before conversion

(blue) and after conversion to the PLTS scale (gold). The dashed line is a cubic fit to η(P )T 2.

The viscosity coefficient, η(P )T 2 (η in poise, P in bar, T in mK following the PLTS scale),

shown in Supplementary Figure 2 and listed in Supplementary Table 1, can be calculated from the

relation,

(η(P )T 2)−1 =
3

∑

i=0

AiP
i,

with

A0 = 6.18470415× 10−1, A1 = 2.49235869× 10−2,

A2 = 2.33758602× 10−4, A3 = −9.37151796× 10−6.

(1)
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The viscosity of 3He can be written as

η =
1

5
npFλ =

1

5
nm

(m∗

m

)

v2F τ,

thus

τ(P )T 2 = 5η(P )T 2
Vm

5.009× 10−24 ×NA

1

(m∗/m)v2F
,

(2)

with pF and vF the Fermi momentum and velocity respectively, n, the particle density, λ the

quasiparticle mean free path, τ the viscous scattering time, Vm the molar volume, NA, Avogadro’s

number, and m*/m the effective mass ratio. The mass of each 3He atom, m = 5.009 ×10−24 g, is

also needed to obtain the mass density.

The molar volume (in cm3, with P in bar) is reproduced from Reference [5].

Vm =
5

∑

i=0

BiP
i,

with

B0 = 36.837231, B1 = −1.1803474,

B2 = 8.3421417× 10−2, B3 = −3.8859562× 10−3,

B4 = 9.475978× 10−5, B5 = −9.1253577× 10−7.

(3)

The effective mass was obtained by fitting a polynomial to the data in Reference [5].
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m∗

m
=

4
∑

i=0

CiP
i,

with

C0 = 2.80, C1 = 0.1292,

C2 = −3.188× 10−3, C3 = 9.372× 10−5,

C4 = −1.03× 10−6.

(4)

The Fermi velocity was obtained by fitting a polynomial to the data in Reference [5]

vF =
4

∑

i=0

DiP
i,

with

D0 = 59.8353052512899, D1 = −1.99579000023344,

D2 = 8.19564928730876× 10−2, D3 = −2.10299440496278× 10−3,

D4 = 2.13615981987922× 10−5.

(5)
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A polynomial fit to Tc(P ) on the PLTS scale is provided in Reference [4] and listed here

Tc,PLTS =
5

∑

i=0

EiP
i,

with

E0 = 0.90972399274531, E1 = 0.14037182852625,

E2 = −0.0074017331747577, E3 = 2.8617547367067× 10−4,

E4 = −6.5064429600510× 10−6, E5 = 6.0754459040296× 10−8.

(6)

We use Supplementary Equations 1, 2, 3, 4, 5 to calculate τηT
2 and then Supplementary

Equation 2, 6 to calculate the quasiparticle scattering time at Tc, τc. We also need TF to calculate

the quantity C(P ) in Equation 4 of the main paper. We use Equation 6 in Reference [6] together

with Supplemental Equation 4 to calculate TF (K), using Vm in cc/mole.

TF =
h̄3

2mkB(m∗/m)

(

3π2

Vm

)2/3

=
54.91

m∗/m
V −2/3
m . (7)

Values for the coefficient τηT
2, τc, Tc, Vm, vF , TF and m∗/m at various pressures are listed in

Supplementary Table 1. These values can be used along with the best fit determination of α =

0.434 and Γ = 40.8 to obtain values for C(P) in Equation 3 of the main paper, which also relates to

δQc/Qc, the maximum contribution to the excess Q at the transition temperature plotted in Figure

3 a) of the main paper.

The hydrodynamic regime (ωτ ≤ 1), is distinct from the collisionless regime (ωτ ≥ 1). In the
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hydrodynamic regime, collisions are frequent compared to the frequency of the external excitation

(e.g. pressure oscillation or shear frequency). In the collisionless regime, the excitation frequency

exceeds the inverse mean time between collisions. In our experiment, the largest value of ωτc is

attained for P = 0 and Tc and is calculated to be ≈ 0.243 (see Supplementary Table 1). In the

first observation of collisionless sound7, the attenuation of first sound is ≈ 4% below the expected

normal state value for ωτ ≈ 0.25. Thus, it is possible that at the lowest pressure, a portion of

the deviation from Q ∝ T is due to a deviation from hydrodynamic behavior. However, such a

contribution would be distributed over a range of temperature and not confined to the region near

Tc. Additionally, the increase in Tc with pressure and the decrease of the coefficient ηT 2 (and τT 2)

with pressure assures us that the departure from Fermi-liquid behavior cannot be accounted for by

non-equilibrium effects due to any departure from the ideal ωτ ≪ 1 regime.

The mean free path (λη) should be smaller than the viscous penetration depth δ=(2η/ρω),

which is the distance over which the transverse velocity field in a fluid of density ρ, viscosity

η, in contact with an object oscillating at a frequency ω, decays exponentially. The mean free

path should also be smaller than the confinement size. These conditions are met well at high

pressure, and marginally at low pressure (see Supplementary Table 1). Once again, the observation

of the departure from Fermi-liquid behavior is strongest at high pressure, where the conditions for

hydrodynamic behavior are well fulfilled.
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Pressure [bar] 0 3 6 9 12 15 18 21 24 27 30

τηT2 [µsmK2 ] 0.985 0.861 0.776 0.712 0.660 0.616 0.597 0.550 0.529 0.515 0.508

τc [µs] 1.19 0.533 0.328 0.234 0.182 0.149 0.127 0.111 0.100 0.0933 0.0887

Tc [mK] 0.9097 1.271 1.539 1.743 1.903 2.033 2.139 2.226 2.296 2.351 2.392

TF [K] 1.77 1.66 1.56 1.49 1.42 1.36 1.31 1.26 1.22 1.17 1.13

Vm [cm3 ] 36.84 33.95 32.03 30.71 29.71 28.89 28.18 27.55 27.01 26.56 26.17

m∗/m 2.80 3.16 3.48 3.77 4.03 4.28 4.53 4.77 5.02 5.26 5.50

vF [m/s] 59.83 54.53 50.38 47.11 44.49 42.32 40.44 38.74 37.15 35.65 34.24

δQ/Qc 0.0176 0.0244 0.0302 0.0343 0.0382 0.0416 0.0445 0.0474 0.0500 0.0544 0.0582

ωτc 0.243 0.109 0.0670 0.0478 0.0372 0.0304 0.0259 0.0227 0.0204 0.0191 0.0181

λη(Tc) [µm] 71.2 29.1 16.5 11.0 8.10 6.31 5.14 4.30 3.72 3.33 3.04

λη( 3 mK) [µm] 6.55 5.22 4.35 3.72 3.26 2.90 2.61 2.37 2.18 2.04 1.93

η(Tc) [poise] 1.97 0.890 0.544 0.384 0.296 0.239 0.202 0.174 0.155 0.141 0.132

δc [µm] 154 99.2 75.3 61.9 53.5 47.4 43.0 39.6 36.9 35.0 33.5

Table 1: Supplementary Table 1: Fermi liquid parameters

Lists various quantities to estimate the fluctuation contribution in Equation 3, Main article, and for

the discussion concerning mean free paths.
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Supplementary Note 2: Background correction procedure

Outline of procedure

In this Supplementary Note, we describe details of the procedure we followed to correctly subtract

the non-resonant background signal from our quartz tuning fork. The quartz fork is driven and

detected through its in-built piezo electric capability. The distinguishing feature of our data on Q

is the fact that we are able to track the quartz fork’s Q continuously at all pressures. This is enabled

by our use of a digital phase locked loop (PLL) that keeps the quartz fork on or near resonance.

There is significant electrical coupling of the drive signal to the output side, with an attendant

frequency dependent phase shift. The loop requires that the received vector signal X(T ), Y (T )

from the lock in amplifier, has the non-resonant signal (feed through) subtracted from the received

signal (See Supplementary Figure 3). When operated in vacuum, the fork’s Q is high enough so

that the received signal displays a Lorentzian response without background subtraction. When

operated in liquid 3He at low temperatures, the fork’s Q can be as low as ≈10 leading to a broad

response with a correspondingly small resonant signal requiring subtraction of the background

signal for further analysis.

The subtraction procedure was carried out while gathering the data within the LabView Vir-

tual Instrument environment. However, after the data was accumulated at several pressures, it

became apparent that the original background calibration was insufficiently precise and that a post

processing procedure would have to be followed. If the fitted background was used “as is”, the

result would be a non-Lorentzian resonance seen in the red trace in Supplementary Figure 5. (The
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background subtraction and effects are shown in Supplementary Figures 3, 4, 5). An important

condition imposed was that the Q vs T plot have a Q(T = 0) = 0 conforming with Fermi liquid

behavior expectations. During our temperature sweep we adjusted the drive frequency when it dif-

fered from the inferred resonant frequency by 5 Hz. If the background subtraction is not performed

correctly one finds small jumps in the inferred Q and resonant frequency. We used the elimination

of these jumps as an additional constraint.

This Supplementary note details the procedure for all post-acquisition adjustments at one

pressure (29.3 bar). Briefly, the procedure consisted of

1. A linear fit to the “as collected” Q vs T for temperatures between 1.2Tc and 1.4Tc yielded

the intercept, Q(0)1, listed as the first iteration of the correction procedure in Supplementary

Table 2. Q(0)1 was converted to signal units (Volts) using a constant k (defined later), and

was subtracted from the X(T ) data, shown in Supplementary Figure 6. This “enforced”

expectations of Fermi liquid behavior in the normal liquid (η → ∞ as T → 0).

2. The Nyquist trace Y (T ) vs X(T ) was plotted for each constant pressure cooldown. Circular

arcs of constant Q were drawn for each drive-frequency reset, shown in Supplementary

Figure 7a). The X(T ) data segments for a given fixed drive frequency were shifted to the

nearest constant Q arc, shown in Supplementary Figure 7b). This was done to eliminate the

slightly jagged character of the Q vs T plot. The mean displacement between X(T ) and its

nearest constant Q arc (denoted as ∆Q1) is the mean jump in Q found in the “as collected”

data and is tabulated in Supplementary Table 2. Q(T ) was recalculated with the corrected
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X(T ) data and the “as collected” Y (T ) data. This completes the first iteration of X offset

corrections.

3. A linear fit to the recalculated Q(T ) data between 1.2Tc and 2Tc (or the highest temperature

in the run), yielded Q(0)2, the intercept in the second iteration of the X offset correction

procedure (tabulated in Supplementary Table 2). Q(0)2 was converted to Volts with the k

constant, and was subtracted from the X(T ) data. The Nyquist trace was plotted, and circu-

lar arcs of constant Q were calculated for each frequency reset point. X(T ) data segments at

fixed drive frequency were shifted onto the nearest constant Q arc. The mean displacement

between X(T ) and its nearest constant Q arc, ∆Q2, the mean jump in Q found in the second

iteration of X offset corrections, is tabulated in Supplementary Table 2. The Q(T ) is recal-

culated with the corrected X(T ) data and the “as collected” Y (T ) data. This completes the

second iteration of X offset corrections.

4. A linear fit to the doubly recalculated Q(T ) data for temperatures between 1.2Tc and 2Tc (or

the highest temperature in the run), yields Q(0)3, the intercept in the second iteration of the

X offset correction procedure tabulated in Supplementary Table 2. Q(0)3 was converted

to Volts with the k constant, and was subtracted from the X(T ) data. The Nyquist trace

was plotted, and the circular constant Q arcs were calculated and drawn at each frequency

reset point. X(T ) data segments for a fixed drive frequency were shifted onto the nearest

constant Q arc. The mean displacement between X(T ) and its nearest constant Q arc, ∆Q3,

(the mean jump in Q found in the third iteration of X offset corrections) is tabulated in

Supplementary Table 2. The Q(T ) was recalculated with the corrected X(T ) data and the
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“as collected” Y (T ) data. This completes the third iteration of X offset corrections.

5. The resonant frequency, fo(T ), was recalculated after the three iterations of X offset correc-

tions. It displayed discontinuous line segments, with jumps in fo(T ) at each frequency reset

point. (See Supplementary Figure 8). The sum of the jumps at each fo was minimized by

multiplying the “originally set” k in LabView by a multiplicative constant, kadj , listed Sup-

plementary Table 2. The final Q(T ) was recalculated with the new scaling constant kadj × k.

A linear fit to the Q(T ) for temperatures between 1.2Tc and 2Tc (or the highest temperature

in the run) was obtained, and its slope Tc is the Qc reported in the main body of the paper.

The intercept of this line is the final intercept quoted in Supplementary Table 2. Supple-

mentary Figure 9 compares the final recalculation of Q(T ) and its linear fit, with the “as

collected” Q(T ) and the linear fit calculated in step 1.

In the following, we provide more details accompanied by figures to clarify the procedure.

Importantly, the fluctuation precursor is seen in the “raw data” before the various iterations at all

pressures. The post data-acquisition procedure is needed to provide the “Fermi liquid background”

behavior to scale the fluctuation contribution. We list the procedure and details so that other users

may adapt it for their own investigations. Elimination or significant reduction of the non-resonant

background signal is essential to resolve any finer detailed variation of the fluctuation contribution.

Ultimately, the ability to continuously track the Q together with the high resolution thermometry

enabled the fluctuation contribution to the viscosity of 3He to be resolved in this experiment.
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Background subtraction and first iteration.

As stated in the summary, we recorded values of X(T ), Y (T ) obtained while driving a quartz

resonator at a frequency, fD near the fork’s resonant frequency, f0 immersed in 3He. To calculate

the Q and f0, the non-resonant signal has to be first subtracted from the received signal.
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Supplementary Figure 3: Quartz tuning fork background sweep. The response of a quartz

tuning fork at 8.1 mK and 29.3 bar over a wide frequency range. The dashed lines are the fitted 3rd

order and 4th order polynomials for the X a) and Y b) responses after the correction noted to fit

a Lorentzian to the fork’s resonance (see Supplemental Figure 4). In panel c) we compare the fit

(dashed line) to the observed complex response.

To effect this subtraction, we first carried out a sweep from 20 kHz through 45 kHz at ≈ 100

mK where the resonant line is narrow. This was done to assess the background and allow the fork
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to be operated while cooling down to dilution refrigerator temperatures. At lower temperatures

(8.1 mK shown in Supplementary Figure 3), we repeated this sweep. We then swept the frequency

through the resonance over a frequency range spanning a few linewidths. We found that the X

channel could be fit to a 3rd order polynomial, and the Y channel required a 4th order polynomial

to adequately fit the background. After subtraction of these backgrounds, we plot the narrow range

signal and obtain a Lorentzian fit for the resonance. A Nyquist plot with the real axis aligned along

the X channel and the out-of-phase response aligned along Y reveal a near perfect circle plot.

These X and Y signals (after subtraction of the fitted background), together with the associated

Nyquist plot are shown in Supplementary Figure 4. In order to obtain a satisfactory Lorentzian fit

a small (≤ +0.05 mV) shift to the fitted background was needed. This increase in X accounts for

the difference between the fit used (shown as a dashed line) and the data shown in Supplementary

Figure 3. The Lorentzian is used to obtain the Q = QR, and the amplitude of the signal at resonance

(AR) is also noted. The previously mentioned constant k is defined as k = QR/AR. (The value of

k used in the LabView VI was likely not accurate enough and necessitated adjustments described

in the following sections). Together with the X(T ) and Y (T ) (X, Y values after subtraction of the

background at any temperature T ), these constitute the inputs to the determination of the resonant

frequency f(T ) and the Q(T ) using the equations8,

Q(T ) =
X(T )2 + Y (T )2

X(T )

(

QR

AR

)

(8)
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f(T ) = fD(T )

(

1 +
Y (T )

X(T )

1

2QT

)

(9)

where fD(T ) is the drive frequency at any temperature, T . These equations form the basis of the

PLL that maintains the fork within ± 5 Hz of resonance and were used to calculate the “raw”

values of Q(T ) and f(T ).
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Supplementary Figure 4: Quartz tuning fork Lorentzian response. The response of a quartz

tuning fork at 8.1 mK and 29.3 bar after subtraction of the background. The black (dashed/solid)

lines on the (left/right) are the fitted curves to a Lorentzian response.

When we apply the same background subtraction to a frequency sweep at 4.9 mK (obtained

a few days later), where the Q is further reduced, the Nyquist response within the linewidth is hor-

izontally off-center. This offset in the X background is not systematically temperature dependent.
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Instead it appears that there is a small frequency dependence to the background (corresponding to

a first order term) that is not captured in our background subtraction procedure.
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Supplementary Figure 5: Quartz tuning fork Lorentzian responses at 8.1 mK and 4.9 mK. The

response of a quartz tuning fork at 29.3 bar taken at 8.1 mK (blue) compared to the response at

4.9 mK (red), both obtained after subtraction of the fitted background signal obtained at 8.1 mK

(See Supplementary Figure 4c)). The Nyquist plot for the 4.9 mK signal shows an offset from the

origin. This is also visible as a negative response for the X signal at 4.9 mK (red) in a).

Because the origin of this shift in background was not evident when the data was being

acquired, we introduced a workaround to compensate for this shift. We collect data in a limited

period of time (typically 1 day) while ensuring minimal thermal gradient between the thermometer

immersed in the 3He and the quartz fork. In practice, this limits us to temperature sweeps within

≈ 40% of Tc. Following this procedure, we observe an artificial intercept (Q 6= 0 at T = 0) in
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the temperature dependence of the Q in 3He (Supplementary Figure 6). After subtraction of this

intercept (Q(0)1), the inferred Q is plotted as the green line in Supplementary Figure 6. Intercepts

of this magnitude or smaller were observed for all the different pressure runs. A list of the offset

Q(0)1 values subtracted for each pressure is shown in Supplementary Table 2.
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Supplementary Figure 6: Q vs T before and after offsets at P = 29.3 bar. Temperature depen-

dence of Q (blue line) inferred following subtraction of the non-resonant signal background. The

dashed line is a linear fit on a 10 percent random sample between 1.2Tc and 1.4Tc. The temperature

fitting range was kept narrow in order to avoid fitting jumps in the data. After subtraction of the

offset, we plot the resulting Q vs T in green.

As the 3He is cooled, due to the increased viscosity, the mass of 3He coupled to the fork
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changes, resulting in a decrease of the resonant frequency. Since the PLL operates at a fixed drive

frequency, we reset the drive frequency once fD -f0(T ) ≥ 5 Hz. However, because of the offset in

X that shifted the Q intercept, Equations 8, 9 are no longer exactly valid. This leads to artificial

jumps in the inferred Q produced when the drive frequency is reset (see the insets to Supplementary

Figure 6). We note that it was difficult to calculate a line of best fit for linear data broken up into

slightly offset line segments as seen in Supplementary Figure 6. This was remedied after the Q

continuity correction.

A line was fitted to the Q(T ) data, and the Q(0)1 value was converted to a voltage, Xoffset.

The Q(0)1 values vary between −1 < Q < 6 with pressure and are listed in Supplementary

Table 2. After subtracting the Xoffset from the raw fork response, we carry out the corrections to

achieve the continuity of Q as described next.

In Supplementary Figure 7 (a), we plot the values of X(T ), Y (T ) obtained during a cooldown

at 29.3 bar. The traces are broken up into segments of data collected at a fixed drive frequency. At

each transition the drive frequency was reset by the PLL to be on resonance (Y (T ) = 0). In the top

panel of Supplementary Figure 7, at each point where a frequency reset is triggered, a circular arc

is traced. This arc of constant Q corresponds to a segment of a Nyquist plot for a circle of diameter

corresponding to the inferred Q factor just before the reset, centered at (X, Y ) corresponding to

Q/2, 0. After the frequency reset, the green trace corresponding to the uncorrected data, systemati-

cally deviates away from the arc. This indicates that the background fit used has a small systematic

frequency dependent error that was not resolved in the fitting procedure described earlier to obtain
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the Lorentzian fit shown in Supplementary Figure 4. To correct for this offset, the next segment

of the data is shifted to the preceding arc of constant Q. For the specific case of the 29.3 bar data

shown here, each segment was shifted by a positive increment to X , corresponding to a positive

shift in Q. We find that the individual changes to ∆Q1 are of order 0.2 ± 0.1. The resulting cor-

rected trace is shown in red in the bottom panel of Supplementary Figure 7. This concludes the

first iterative correction.
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Supplementary Figure 7: Nyquist trace during a cooldown at P = 29.3 bar. The top trace

shows the observed trace of Y (T ) vs X(T ) data taken while cooling before correction (green).

As the temperature decreases, the X(T ) decreases, and Y (T ) also decreases corresponding to a

decrease in the resonant frequency. Also shown are individual segments of circles (Nyquist plots)

originating at X = 0, Y = 0 that pass through the last point in X(T ), Y (T ) before the frequency is

reset. The lower panel depicts the trace (red) of X(T ) vs Y (T ) after adjustment described in the

text.
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Second and Third Iterative Correction.

Because of the cumulative change in the Q accompanying each reset of the drive frequency, the T =

0 intercept seen in Supplementary Figure 3 would be changed. Therefore, a further two iterations to

obtain the offsets Q(0)2 and Q(0)3 and Q continuity corrections yielding ∆Q2,∆Q3 were carried

out to minimize the T = 0 intercept and any remaining discontinuities in Q across resets of drive

frequency. These linear fits were extended to between 1.2 Tc and 2Tc (or the highest temperature

that data at a given pressure was acquired at). The final corrected data and linear fit is shown as the

color coded trace in Figure 1 of the main paper, and was used in all further analysis detailed in the

main paper. The values for Q(0)2, Q(0)3 and ∆Q2,∆Q3 are listed in Supplementary Table 2.

Correction to k.

The frequency dependent correction described in the previous sections is essentially confined to

X(T ). Consequently, the raw inferred resonance frequency f0(T ) is continuous with temperature

(blue trace in Supplementary Figure 8). However, after making corrections to the X component of

the response as detailed in this Supplementary Note, the inferred frequency is no longer continuous

across changes in drive frequency (red trace in Supplementary Figure 8). A correction is needed

to k (the difference in the value of the inferred frequency from the drive frequency depends on

the value of k - See Supplementary Equations 8, 9). Note that Y (T ) ≪ X(T ), so that Q(T ) ≈

X(T )×k. Therefore, we apply a multiplicative constant kadj = k′/k, where k′ is the new voltage to

Q conversion factor. The kadj is found by minimizing the sum of all the jumps at a frequency reset,
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resulting in the dashed orange trace in Supplementary Figure 8 that aligns well the raw resonance

frequency. In a few runs (8 bar, 5 bar and 2 bar) the drive frequency was held fixed throughout

the temperature sweep. Consequently, there are no values for ∆Q1,∆Q2,∆Q3 in the table. In

these runs, the zero temperature offset was subtracted, and the kadj was found by minimizing the

difference in the original raw fo and the fo upon a X offset subtraction based on a zero temperature

intercept.
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Supplementary Figure 8: Resonant Frequency vs Temperature at P = 29.3 bar. The blue trace

shows the raw data for resonant frequency plotted against the temperature, obtained from the fit to

Q at 8.1 mK. Following offsets of Q, the resulting plot (orange) displays discontinuities. This is

resolved by appropriate changes to kadj restoring f0(T ) (dashed red line) to the original values.

After following these steps, we plot the corrected results for Q vs T and δQ vs T along-

side the uncorrected raw data in Supplementary Figures 9, 10. We also show the full extent of all
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temperatures and pressures measured with corrections applied in Supplementary Figure 11. Indi-

vidual plots similar to Supplementary Figure 9 for 27 bar, 23 bar, 20 bar and 15 bar are shown

in Supplementary Figure 12 and for 8 bar, 5 bar, 2 bar and 0.5 bar are shown in Supplementary

Figure 13.

Supplementary Figure 9: Q vs. Temperature before and after X offset corrections P = 29.3

bar. We show the Q before (blue) and after (orange) the X offset and k correction were applied.

The plot in shown in gold here appears in Fig 1 a) of the main paper. The dashed line is a linear fit

on the raw data in the 1st iteration of the correction procedure. The dotted line is a linear fit on the

fully corrected data.
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Supplementary Figure 10: δQ vs. the square root of the reduced temperature before and after

offsets at P = 29.3 bar. We show the δQ before (blue) and after (gold) the correction offsets

were applied. The plot in shown in gold here appears in Figure 2a) of the main paper.
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Supplementary Figure 11: Corrected Q vs. temperature of all pressures over a larger temper-

ature range. We show the corrected Q vs. temperature data up to the highest temperature data

was taken for each pressure. a) Corrected Q vs temperature, where the dashed lines are linear fits.

The dotted colored line is the fork response below Tc. The dashed black lines are the linear fits

extrapolated below Tc. b) Q versus a reduced temperature scale.
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Supplementary Figure 12: Corrected Q vs. temperature for a) 27 bar, b) 23 bar, c) 20 bar,

and d) 15 bar. The legend for the traces plotted in each section of the grid are equivalent to

Supplementary Figure 9. The plot compares the corrected data (orange), to the “as collected” data

(blue). The kadj constants for each run can be found in Supplementary table 2. The dashed line is

a linear fit to the uncorrected data, and the dotted line is the final linear fit to the corrected data.
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Supplementary Figure 13: Corrected Q vs. temperature for a) 8 bar, b) 5 bar, c) 2 bar, and d)

0.5 bar. The legend for the traces plotted in each section of the grid are equivalent to Supplemen-

tary Figure 9. The plot compares the corrected data (orange), to the “as collected” data (blue). The

kadj constants for each run can be found in Supplementary table 2. The dashed line is a linear fit to

the uncorrected data, and the dotted line is the final linear fit to the corrected data.

26



P (bar) final Q(0) kadj Q(0)1 Q(0)2 Q(0)3 1st ∆Q1 ∆Q2 ∆Q3

29.3 0.00252 1.25 5.69 1.95 0.059 -0.231 -0.0025 -0.000103

27 4.13e-05 1.22 1.86 0.594 0.00431 -0.00353 -9.13e-05 -7.53e-07

23 -1.3e-05 1.14 0.208 -0.182 -0.00154 -0.00112 3.32e-05 2.23e-07

20 -3.81e-05 1.18 3.48 -0.0172 -0.00146 -0.0829 0.00019 1.35e-06

15 0.000169 1 -1.78 1.47 0.0157 -0.024 -0.000407 -4.22e-06

8 -1.03e-07 1 -4.26 -1.36 9.78e-06 0 0 0

5 0.000111 1.23 2.63 0.0485 -0.00209 0 0 0

2 -5.64e-05 1.25 2.12 -0.0543 0.00154 0 0 0

0.5 2.64e-05 1.42 3.04 0.0837 -0.00319 0.0696 -0.00018 9.17e-07

Table 2: Supplementary Table 2: Background Subtraction. The table lists the pressures,

the final value of Q(T = 0), the adjusted value of k (the multiplicative factor applied the

conversion factor k from signal amplitude to Q), the Q(T = 0) for three iterations of the

correction procedure, and the the average jump in Q after a frequency reset for three

iterations.
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Background in the low-Q regime

Supplementary Figure 14: Background subtraction over a wide frequency range in the low Q

regime. T = 2.5 mK and P = 0.56 bar. a) The X response of the quartz fork fitted to a 3rd order

polynomial. b) The Y response of the quartz fork fitted to a 4th order polynomial. c) The fork

response over a wide frequency range in a Nyquist plot, together with the fit (orange dashed line).
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Supplementary Figure 15: Background subtraction over a narrow frequency range in the low

Q regime. T = 2.5 mK and P = 0.56 bar. The Q-factor from this fit is ≈ 35, and the fitted

resonance is f0 = 32079 Hz (linewidth, ∆f = 916 Hz). a) The X response of the quartz fork

fitted to the real part of a complex Lorentzian. b) The Y response of the quartz fork fitted to the

imaginary part of a complex Lorentzian. c) The quartz fork response and fit in a Nyquist plot.

In addition to the background presented in Supplementary Figures 3, 4, we carried out a frequency

sweep to fit the background at low temperature and low pressure. Supplementary Figure 15a)

shows poor agreement between the real response and the fit to a Lorentzian. The fit deviation in

the X component is observed in the Nyquist plot in Supplementary Figure 15 a) and c) as well.

The fork’s response is small in the low-Q regime. The broader response due to the low Q and a

temperature dependent background, is responsible for a poor fit. In Supplementary Figure 16 we
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show the consequence of using a high temperature and high pressure fit to data obtained in the low

Q regime.

Supplementary Figure 16: Low Q sweep with a high Q/high temperature and pressure back-

ground. The blue trace is the response from Supplementary figure 4 minus the background ob-

tained from the wide response in figure 3, at T = 8.1 mK and P = 29.3 bar. The red trace is the

fork response at T = 2.5 mK, P = 0.56 bar, minus the same high temperature and high pressure

background as the blue trace. a) The X responses of the quartz fork fitted to the real part of a com-

plex Lorentzian, and normalized by the resonant amplitude. b) The Y responses of the quartz fork

fitted to the imaginary part of a complex Lorentzian and normalized by the resonant amplitude. c)

The quartz fork responses in a Nyquist plot normalized by the resonant amplitude.
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