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Anisotropic pair breaking close to surfaces favors chiral superfluid 3He-A over time-reversal in-
variant 3He-B. Confining superfluid 3He into a cavity of height D of the order of the Cooper pair
size characterized by the coherence length ξ0—ranging between 16 nm (34 bar) and 77 nm (0 bar)—
extends the surface effects over the whole sample volume, thus allowing stabilization of the A phase
at pressures P and temperatures T where otherwise the B phase would be stable. In this work the
surfaces of such a confined sample are covered with a superfluid 4He film to create specular quasipar-
ticle scattering boundary conditions, preventing the suppression of the superfluid order parameter.
We show that the chiral A phase is the stable superfluid phase under strong confinement over the
full P − T phase diagram down to a quasi-two-dimensional limit D/ξ0 = 1. The planar phase,
which is degenerate with the chiral A phase in the weak-coupling limit, is not observed. The gap
inferred from measurements over the wide pressure range from 0.2 to 21.0 bar leads to an empirical
ansatz for temperature-dependent strong-coupling effects. We discuss how these results pave the
way for the realization of the fully-gapped two-dimensional px + ipy superfluid under more extreme
confinement.

Chiral superconductivity is a rare phenomenon with
non-trivial topology, predicted to result in several ex-
otic properties [1]: macroscopic angular momentum [2–
4]; anomalous quantum Hall effect [2, 5, 6]; half-quantum
vortices [7–10]; spontaneous chiral edge currents [4, 11];
and chiral Majorana states bound on the edges and
vortex cores [6, 10, 12–15], obeying non-Abelian braid-
ing statistics required for topological quantum com-
putation [16–19]. Various superconducting materials
have been proposed to realize chiral Cooper pairing [20,
21], e.g., Sr2RuO4 [22–24], UPt3 [25–28], UTe2 [29],
LaPt3P [30], SrPtAs [31, 32], and URu2Si2 [33]. Al-
though most of these materials show evidence for bro-
ken time-reversal symmetry, the actual pairing states are
still under debate [1, 20, 21]. Conversely, the unconven-
tional p-wave spin-triplet pairing in superfluid helium-3
is well-established [34–36], with one of its stable phases,
3He-A, having a directly measurable chirality [37–40].
Importantly, the coherent nuclear dipole interactions,
determining the weak spin-orbit coupling in superfluid
3He, allow the interrogation of the nuclear spins of the
paired 3He fermions directly by nuclear magnetic reso-
nance (NMR) to determine the order parameter.

Bulk 3He is distinguished from its metal counterparts
by the maximal symmetry group SO(3)L × SO(3)S ×
U(1)ϕ × T × C × P of the normal state [35, 41]. Here
SO(3)L and SO(3)S denote the three-dimensional rota-
tions in the orbital and spin spaces, respectively, and
U(1)ϕ is the gauge symmetry. These continuous sym-
metry groups are combined with the time-reversal (T),
particle-hole (C), and parity (P) discrete symmetries.

Consequently, the irreducible representations from which
the order parameter is constructed are simple spheri-
cal harmonics of degree one. In the bulk liquid at zero
magnetic field there are two stable phases with distinct
broken symmetries: chiral A phase with point nodes in
the energy gap and time-reversal-invariant B phase with
isotropic gap. 3He-B dominates the P − T phase dia-
gram with the chiral 3He-A restricted to temperatures
relatively close to the bulk superfluid transition temper-
ature Tc0 at pressures above the polycritical point at
Pc = 21.22 bar, see Fig. 1a [35].

In this work we explore the effect of very strong
anisotropic confinement on the superfluid. This breaks
its rotational symmetries, leading to the predicted sta-
bility of the chiral A phase over the entire P − T phase
diagram [42–47]. Confinement in the absence of dis-
order is achieved in a nanofabricated slab geometry of
height D = 80nm, which is comparable to the zero-
temperature coherence length ξ0 = ℏvF/2πkBTc0 and
approaches the quasi-two-dimensional limit D/ξ0 = 1
at low pressures. Here vF is the Fermi velocity. The
observed order-parameter suppression arising from pair
breaking by surface scattering [42, 48–51], which we tune
to be specular, is minimal [47]. As a consequence, ac-
cess is opened to even stronger confinement in which the
size quantization across the sample can play a signifi-
cant role. This potentially leads to a fully gapped two-
dimensional chiral 3He-A. The absence of gap nodes in
the pure 2D case eliminates the nodal low-energy quasi-
particles, leaving Majorana-Weyl edge states as the only
available sub-gap states. Moreover, tuning the cavity
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height is predicted to lead to analogues of the quantum
Hall effect [2, 5, 34].

An important consideration is the relative stability of
the chiral A phase and the time-reversal-invariant planar
phase (2D helical phase), particularly at low pressures,
since these phases are degenerate in the weak-coupling
limit [35]. However, in our experiment we found no ev-
idence of any phase other than the A phase. This dis-
covery does not support the interpretation of a transport
anomaly observed at a film thickness D = 137 nm in
terms of a phase transition from 3He-A into a different
phase [52]. Furthermore, having access to the A phase
over a wide temperature and pressure range, we charac-
terized the pressure and temperature dependence of the
strong-coupling effects stabilizing it.

We report SQUID-amplified NMR experiments per-
formed using the setup described in Refs. [46, 47, 53, 54].
The sample container with atomically smooth walls
(0.1 nm surface roughness) was nanofabricated out of two
silicon pieces. The silicon patterning process followed
Refs. [55, 56]; an additional step of thermal oxidation
passivated the surfaces [57, 58] before fusion bonding the
patterned wafer and the lid together [54]. The cavity was
connected to the fill line by a set of five 2.5mm × 10 µm
× 50 µm trenches [54] providing the “bulk marker” for
in situ determination of Tc0 [47]. We performed NMR
in a magnetic field of approximately 30mT perpendicu-
lar to the cavity, H0 ∥ ẑ, corresponding to the Larmor
frequency fL = 1005 kHz. Magnetic field gradients were
applied to separate the signals arising from the cavity
and the bulk marker, and to suppress the signal from the
mouth of the fill line.

The temperature of the heat exchanger was measured
with a Pt-NMR thermometer, calibrated against the 3He
melting curve [67]; the temperature gradient between the
helium in the cavity and the Pt sensor was inferred as
described in the Supplementary Information of Ref. [47].

To achieve essentially specular quasiparticle scattering
at the boundaries [46, 47, 68, 69], we preplated the sur-
faces with 100µmol/m2 of 4He prior to filling the cell
with 3He. For this preplating the temperature gradient
across the cavity and the bulk marker is negligible [47].

The phase diagram was mapped with NMR pulses with
a small tipping angle β < 10◦, applied while ramping the
temperature up or down at a rate of 10–30µK/hour, see
Fig. 2a. The superfluidity manifests as an NMR preces-
sion frequency shift ∆f = f − fL away from the Larmor
frequency, with an onset at the superfluid transition tem-
perature Tc. The minute suppression of Tc with respect
to the bulk marker transition temperature Tc0, Fig. 1c,
indicates that the surface scattering is nearly perfectly
specular. Within the quasiclassical theory [45, 51, 70]
this can be parameterized in terms of specularity S, the
probability of specular scattering [47, 50]. Our data cor-
respond to S > 0.97 over the entire pressure range, con-
sistent with Tc suppression measured in a D = 192 nm
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FIG. 1. (Color online) Phase diagrams of bulk 3He with two
superfluid phases (a) and of 3He in the D = 80nm cavity,
where 3He-A is the only stable superfluid phase (b). The pres-
sures covered in this work were 0.2, 2.5, 5.5, 12.0, 21.0, and
23.0 bar (violet squares). (c) The suppression of superfluid
transition temperature Tc/Tc0 by confinement against the ef-
fective cavity height D/ξ0 driven with geometry and pres-
sure, with smaller values of D/ξ0 corresponding to lower pres-
sures. These universal coordinates demonstrate good agree-
ment with the measurements in the D = 192 nm cavity with
similar 4He preplating (orange circles) [47]. The suppression
of Tc is extremely small, consistent with calculated specular-
ity S > 0.97 (dash-dotted line). The horizontal error bars
encompass the cavity height distortion induced by pressure
(maximally 2.6 nm/bar), as estimated from a finite-element
model [47]. The vertical dotted line denotes the transport
anomaly reported in a 3He film at D = 137 nm at 0 bar [52].

cavity [47]. The calculations using quasiclassical the-
ory demonstrate that in the case of the A phase the
S = 0.98 surface specularity reduces the energy gap in a
D = 80nm cavity only by 2.5–5.0% at 0.2 bar and by 0.5–
1.0% at 21.0 bar with respect to the bulk gap achieved
for S = 1.0 [59]. Thus we directly use the magnitude of
the measured frequency shift, proportional to the square
of the energy gap, to identify the confined superfluid as
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FIG. 2. (Color online) NMR signatures of the superfluidity in the 80 nm high slab-shaped cavity. (a) Colormap of NMR spectra
arising from the cavity and the bulk marker as a function of temperature at 21.0 bar. The cavity signal has a constant magnitude
and negative frequency shift below the superfluid transition temperature Tc, characteristic of the 3He-A with dipole-unlocked
spin-orbit orientation. The bulk marker, shifted to higher normal-state frequency by a magnetic field gradient, shows the
expected positive frequency shift below the bulk superfluid transition temperature Tc0 and is lost on cooling due to broadening.
White dashed line indicates the measured superfluid transition temperatures in the cavity and in the bulk marker, which at
P = 21.0 bar are virtually equal (see Fig. 1c). (b) The initial slope of the frequency shift in the cavity in comparison with
prior measurements in the A phase. Closed symbols mark the values determined by us under confinement with the specular
boundary condition: D = 80nm (violet squares) and D = 192 nm (orange circles) [47]. The violet line is a linear fit to these
combined data sets [59]. The high-field experiments (blue downward-pointing triangles) and the linear fit (blue dashed line) of
the bulk 3He-A initial slope are from Refs. [60–62]. The data based on stable or supercooled bulk 3He-A are from Ref. [63]
(red upward-pointing triangles) and Ref. [64] (black diamonds). To compensate for the systematic differences arising from
different definitions of ISf , small adjustments have been made to some of the values [47, 59]. (c) The dependence of the cavity
frequency shift ∆f on the tipping angle β is consistent with ∆f(β) ∝ − cosβ (colored bands), a signature of the A phase with

d̂ ⊥ l̂ ∥ H0. The range of β was limited to β < 60◦ by anomalous NMR heating of confined helium [65]. To mitigate the effect
the measurements employed the “pulse-antipulse” technique to vary β at a constant level of heating [66]. The legend quotes
the temperature of confined helium inferred from ∆f(β → 0) (based on data in Fig. 3).

the A phase close to Tc and to measure the bulk A-phase
gap over a wide temperature and pressure range.

The temperature-independent magnitude of the cavity
signal (constant sample magnetization), as exemplified
in Fig. 2a, indicates equal spin pairing, consistent with
3He-A. The superfluid frequency shift ∆f is negative, as
expected for the dipole-unlocked spin-orbit orientation
of the A phase, previously identified in less confined sys-
tems [43, 46, 64, 68]. This orientation is characterized by

mutually perpendicular orbital angular momentum l̂ and
zero-spin direction d̂, with the former locked perpendic-
ular to the surface throughout the cavity by the strong
confinement and the latter perpendicular to the magnetic
field. At small tipping angles (cosβ ≈ 1) the frequency
shift in this orientation is of the same magnitude and op-
posite sign as in the bulk. To confirm this, the initial
slope ISf = ∂

∣∣f2 − f2
L

∣∣ /∂ (1− T/Tc) of the measured
frequency shift is in good agreement with the prior A-
phase measurements, Fig. 2b. In this work we determine
the initial slopes over the 0.90Tc < T < Tc temperature

range where the frequency shift is still expected to vary
linearly with temperature [47, 59]. Further verification

of the A phase with d̂ ⊥ l̂ ∥ H0 is the tipping-angle
dependence ∆f(β) ∝ − cosβ [43], Fig. 2c.

We now review the NMR signatures of the planar
phase, the strongest (and, to our knowledge, the only) al-
ternative candidate for the superfluid state in our cavity
consistent with the temperature-independent magnetiza-
tion. Since the planar phase is the extreme limit of the B
phase with planar distortion [46, 65, 66], two nonequiv-
alent spin-orbit orientations can be realized in a cavity
with magnetic field normal to it. We readily rule out the
stable orientation P+ characterized by ∆f > 0. How-
ever, in the metastable P− state ∆f has the same sign
and tipping-angle dependence as the dipole-unlocked A
phase in our geometry. Moreover, its magnitude coin-
cides with that of the A phase in the weak-coupling limit,
making it difficult to distinguish these phases from the
NMR signatures alone. However, below a critical mag-
netic field of order the dipole field HD ∼ 3mT [35] P−
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FIG. 3. (Color online) The temperature dependence of the
A-phase energy gap ∆2

0/k
2
B inferred from NMR using Eq. (1)

(open symbols) in comparison with various theoretical mod-
els. The pressure (color coded) tunes the strong-coupling ef-
fects. The BCS gap (dotted lines), fully determined by Tc0,
undershoots the data. Near Tc0 the agreement is improved
by scaling the BCS gap using Eq. (2) with experimentally
determined β245 [71] (solid lines). The ansatz, Eq. (3), for
the temperature dependence of β245 describes the measured
gap over the full temperature range (dashed lines). One more
pressure is shown in the Supplemental Material [59].

becomes unstable and converts into P+ [65]. Thus, we
ruled out the planar phase by observing no change to the
negative frequency shift upon cycling the magnetic field
down to zero and back up [59].

Figure 3 shows the A-phase energy gap inferred from
the small-tipping-angle frequency shift via pressure-
dependent temperature-independent scaling [47]

∆2
0(T ) =

IS∆
ISf

∣∣f2(T )− f2
L

∣∣ . (1)

Here ∆0 refers to the maximum A-phase energy gap in
the momentum space at p̂ ⊥ l̂. The initial slope of the
gap IS∆ = ∂∆2

0/∂ (1− T/Tc0) ∝ ∆CA ∝ 1/β245 is di-
rectly related to the A-phase heat capacity jump ∆CA

at Tc0, which is inversely proportional to the Ginzburg-
Landau parameter β245 [35, 71].
The data clearly deviate from the weak-coupling gap

∆0,BCS(T ) obtained within the p-wave Bardeen-Cooper-
Schrieffer (BCS) theory. This is a manifestation of

strong-coupling effects, particularly prominent at high
pressures [70]. Agreement near Tc0 can be achieved by
scaling the BCS gap [47] by the ratio of the βBCS

245 obtained
from the BCS theory and β245 derived experimentally at
a given pressure [71]:

∆2
0(T ) =

βBCS
245

β245
∆2

0,BCS(T ). (2)

However, Eq. (2) overestimates the data at low tempera-
tures and high pressures. This is consistent with the re-
duction of the strong-coupling effects on cooling, which
has been incorporated into Ginzburg-Landau theory in
terms of temperature-dependent βi parameters [72]. We
introduce an ansatz for this temperature dependence [59]:

β245(T ) = βBCS
245 +

(
β245(Tc0)− βBCS

245

)
×

(
1− 0.09

∆2
0,BCS(T )

k2BT
2
c0

)
, (3)

where β245(Tc0) ≡ β245 is the conventional Ginzburg-
Landau parameter measured near Tc0 [71]. Substituting
Eq. (3) into Eq. (2) leads to excellent agreement with the
experimental data over the full temperature and pressure
range. We propose that Eq. (3) and similar expressions
for the other βi parameters may improve the quantita-
tive predictions of the Ginzburg-Landau theory at low
temperatures.
In conclusion, the constant signal magnitude, as well as

the sign, tipping-angle dependence, and the initial slope
of the frequency shift ∆f very strongly suggest that the
chiral 3He-A is the only stable superfluid phase under
strong confinement down to D/ξ0 = 1. The earlier ob-
servation of a discontinuity in the superfluid density as
a function of film thickness at D = 137 nm was obtained
using a torsional oscillator with a mechanically polished,
but still relatively rough, Cu disk as the substrate for
the 3He film [52]. Thus the observed transport anomaly
possibly reflects a change in film morphology, with extra
superflow paths in thicker films. In contrast to our ex-
periment, the boundaries of this film were a free surface
and the solid 3He boundary layer, which we subsequently
have found to influence the surface quasiparticle scatter-
ing [47]. Determination of the order parameter in this
case is a goal of future work.
The possibility to create nearly perfectly specular sur-

faces by 4He preplating provides the mechanism to ob-
serve unsuppressed superfluidity in thin films. This
will enable future investigations deeper into the two-
dimensional regime D/ξ0 < 1 [73]. Treating a thin
helium film within the confining slab-shaped cavity as
trapped in an infinite potential well in the z-direction,
the quantization of the wave vector kz(n) = πn/D limits
the allowed values of the A-phase energy gap to [59]

∆A(n) = ∆0

√
1− n2

n2
0

. (4)
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FIG. 4. (Color online) Illustration of the allowed substates
of the Fermi sphere and the A-phase energy gap resulting
from the quantization of kz in a very thin film of superfluid
3He. The blue quarter sphere represents part of the Fermi
sphere with radius kF. The orange surface around it is a
schematic illustration of the bulk A-phase energy gap ∆A =
∆0| sin θ|, where θ is the angle between the anisotropy axis

l̂ ∥ ẑ and k̂ [35]. The allowed substates of kz due to the size
quantization are drawn as disks labeled by n. In this example
the maximum number of substates of kz below kF is 3, and
the highest substate does not coincide with the node in the
gap, i.e., 3 < n0 < 4. The energy gap ∆A(n) corresponding
to each disk follows from Eq. (4). The gap and the Fermi
sphere are not drawn to scale since ∆0 ≪ EF, where EF is
the Fermi energy.

Here n ≤ n0 is an integer and n0 = kFD/π, which gener-
ally is not an integer, is the maximum available number
of Fermi disks for 0 < kz ≤ kF, where kz(n0) = kF
at the pole of the Fermi surface. By fine tuning the
system by adjusting the quantization condition to align
the largest allowed kz away from kF, one could elimi-
nate nodes entirely from the energy gap, see Fig. 4. In
our D = 80nm cavity n0 ≈ 200, which sets the Fermi
disks too densely to see any quantization effects within
the temperature range covered by us. However, taking
for example a D = 10nm cavity, where n0 ≈ 25, the
minimum value of the gap corresponding to the largest
available kz could be as high as 0.28∆0 [59]. Such a fully-
gapped chiral superfluid at very low—but achievable—
temperatures, without the usual node-bound thermal
quasiparticle excitations present, enables access to the
physics of the two-dimensional superfluid film [34]. We
also note that as the normal state becomes progressively
more 2D within more confined systems, the Fermi liquid
properties and spin-fluctuation pairing interactions may
be modified, and eventually impact the stability of the
2D 3He-A as well. Until that limit the quantization of kz
should enhance the quest to detect the emergent chiral-
specific phenomena, such as the quantum Hall effect [2, 5]
and the edge-bound chiral Majorana-Weyl states and the
corresponding ground-state edge currents. In addition,
confining such a thin 3He-A film laterally has been pre-
dicted to lead to a sequence of phase transitions into a

pair-density-wave phase and the polar phase [74].

Data availability: The measured Tc, initial slopes, and
the energy gap data and the related calculations that
support the findings of this study are openly available in
Figshare [75].
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GAP SUPPRESSION BY SPECULARITY S = 0.98

Any non-specular boundary condition (S < 1.0) spa-
tially suppresses the energy gap close to the surfaces,
resulting in the suppression of the superfluid transition
temperature Tc [45, 50]. Despite the acquired spatial de-
pendence of the gap, the NMR precession within a con-
finement D ≪ ξD is uniform. Here ξD ∼ 10 µm is the
dipolar length [35]. Frequency shift ∆f is determined by
the spatially averaged value of the squared energy gap,
⟨∆2

0(z)⟩, and Eq. (1) in the main text can be written
as [46, 47]

⟨∆2
0(z)⟩ =

IS∆
ISf

∣∣f2 − f2
L

∣∣ . (S1)

The Tc-suppression measurements presented in Fig. 1c in
the main text give surface specularity close to S = 0.98
within our D = 80nm cavity. The corresponding sup-
pression of the energy gap, based on the calculations us-
ing the quasiclassical weak-coupling theory [45, 51, 70]
and shown in Fig. S1a, is minuscule over the full pres-
sure and temperature span, allowing the identification of
the superfluid phase within the cavity as 3He-A. Addi-
tionally, this cannot explain the observed deviation of the
inferred gap values (Fig. 3 in the main text and Fig. S3
here) from the weak-coupling BCS (bulk 3He-A, S = 1.0)
temperature dependence, allowing the precise determi-
nation of the strong-coupling effects particularly visible
at higher pressures. For example, at 21.0 bar the calcu-
lated squared energy gap with S = 0.98 deviates from
the squared BCS gap only by less than 1% over the full
temperature range, see Fig. S1b.

INITIAL SLOPES

The initial slope ISf = ∂
∣∣f2 − f2

L

∣∣ /∂ (1− T/Tc) is a
good indicator distinguishing between different super-
fluid phases. It can be determined from the linear fit
for the squared precession frequency shift

∣∣f2 − f2
L

∣∣ ver-
sus temperature [46, 47]. The agreement is truly lin-
ear only very close to Tc so the temperature range used
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FIG. S1. (a) The spatially averaged values of the squared
energy gap with specularity S = 0.98 corresponding to differ-
ent effective cavity heights D/ξ0 (colored dashed lines) do not
significantly deviate from the BCS temperature dependence
of the squared bulk 3He-A gap, equivalent to S = 1.0 (black
solid line). The used values of D/ξ0 are consistent with pres-
sures 0.2, 2.5, 5.5, 12.0, and 21.0 bar within a D = 80nm high
cavity, from the lowest given value of D/ξ0 to the highest, re-
spectively, taking into account the cavity height distortion by
pressure [47]. (b) The deviation of the calculated spatially
averaged values from the squared BCS gap ∆2

0,BCS relative to
its value at T = 0. The relative difference smoothly decreases
with decreasing temperature, with the strongest confinement
(the smallest D/ξ0) showing the largest suppression. The
lines do not reach up to Tc0 due to small suppression of Tc,
given in the legend in panel (a). The ripples visible around
Tc/Tc0 ≈ 0.2 are artifacts from the calculations.
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FIG. S2. Initial slopes of frequency shift versus tempera-
ture determined within range 0.95Tc < T < Tc compared to
previous bulk 3He-A experiments. Violet squares show the
combined specular data from cavities with D = 80nm and
D = 192 nm [47]. Violet line is a linear fit to these data. The
high-field experiments (blue downward-pointing triangles) and
the linear fit (the blue dashed line) of the bulk 3He-A initial
slope are from Refs. [60–62] using the same 5% range below Tc

for determining them. The data based on stable and/or su-
percooled bulk 3He-A are from Ref. [63] (red upward-pointing
triangles) and from Ref. [64] (black diamonds). In these works
the used range differed from 5%, so the values have been ad-
justed to compensate for the systematic differences [47].

in the determination of the experimental value needs
to be carefully chosen. In the main text we use range
0.90Tc < T < Tc which is a suitable compromise be-
tween precision and accuracy, taking into account the
number of data points within the range and the re-
lated uncertainties [47]. Initial slope defined this way
is thus ideal for the conversion between the measured
frequency shift and the energy gap. However, various
temperature ranges have been used to infer the values
of the initial slope reported in the literature. To avoid
the systematic differences and to allow comparison, we
adjust the values using the relative range dependence
of the initial slope of the calculated weak-coupling en-
ergy gap ISBCS

∆ = ∂∆2
0,BCS/∂ (1− T/Tc0), as described

in Ref. [47]. In Fig. S2 we show the data using range
0.95Tc < T < Tc to allow unadjusted comparison to the
most complete data set from the earlier bulk 3He-A ex-
periments in Refs. [60–62]. We also combine the data
measured with cavities of D = 80nm (this work) and
D = 192 nm [47] (data only available below P ≤ 5.5 bar)
having similar 4He preplating. The other included ex-
periments used different ranges [63, 64], so we have used
the abovementioned scaling to bring those values into
the same 5% range below Tc. The value of ISf increases
linearly with pressure, as seen before, and our measure-
ments are in a good agreement with the earlier work.

STRONG-COUPLING TEMPERATURE
DEPENDENCE

Near the superfluid transition temperature Tc0 the en-
ergy gap can be described by Ginzburg-Landau (G-L)
theory and directly related to the specific-heat jump ∆CA

at the transition. In the A phase the maximum ∆0 of the
gap in momentum space is given by [35]

∆2
0(T ) =

α(T )

4β245
=

∆CA

CN
(πkBTc0)

2(1− T/Tc0), (S2)

where α(T ) and β245 are coefficients of the G-L the-
ory. The full temperature dependence of the gap is well-
established within the weak-coupling BCS theory. In this
limit the scale of the gap, ∆0,BCS(T ), is fully determined
by the value of Tc0. However, since the experimentally
observed ∆CA ∝ β−1

245 is larger than the BCS value [71],
the gap is enhanced by the strong-coupling effects, the
more the higher the pressure.
A simple way to take this into account, used in

Ref. [47], is to scale ∆0,BCS(T ) using the established be-
havior near Tc0:

∆2
0(T ) =

∆CA

∆CBCS
A

∆2
0,BCS(T ) =

βBCS
245

β245
∆2

0,BCS(T ). (S3)

Eq. (S3) successfully describes the pressure-dependence
of the straight-line behavior of ∆2

0(T ) in the G-L regime,
Eq. (S2), but overshoots the data at lower temperatures,
see Fig. S3 and Fig. 3 in the main text. This is a man-
ifestation of the reduction of the strong coupling effects
on cooling. Wiman and Sauls have suggested to incorpo-
rate this phenomenon into the G-L theory by giving all
βi coefficients a temperature dependence [72]

δβi(T ) ≡ βi(T )− βBCS
i =

(
βi(Tc0)− βBCS

i

) T

Tc0

= δβi(Tc0)
T

Tc0
, (S4)

where βi(Tc0) ≡ βi is the conventional G-L parameter at
Tc0 based on a set of experiments [71]. In particular,

δβ245(Tc0)

βBCS
245

=
∆CBCS

A

∆CA
− 1. (S5)

Next we combine Eqs. (S3) and (S4):

∆2
0(T ) =

βBCS
245

β245(T )
∆2

0,BCS(T )

=
∆2

0,BCS(T )

1 +
δβ245(Tc0)

βBCS
245

T

Tc0

. (S6)

This model improves the agreement with the NMR data
down to T ∼ 0.7Tc0, consistent with the key success
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FIG. S3. Comparison of the measured and calculated energy
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on Eqs. (S6) (densely dotted lines) and (S8) (dashed lines).
The pressures from the lowest to the highest data set are 0.2,
2.5, 5.5, 12.0, and 21.0 bar, respectively.

of Eq. (S4) in capturing the bulk A-B phase boundary
TAB(P ) [72], which occurs above min(TAB) = 0.78Tc0.
At lower temperatures Eq. (S6) underestimates the gap,
with unphysical prediction that at any pressure the weak
coupling limit is reached at T → 0, see Fig. S3.
A very good agreement with the experimental data is

obtained by replacing T/Tc0 in Eq. (S4) with a function
of temperature behaving similarly above 0.7Tc0 but not
dropping all the way to zero at T → 0,

δβi(T ) = δβi(Tc0)

(
1− 0.09

∆2
0,BCS(T )

k2BT
2
c0

)
. (S7)

This expression, illustrated in Fig. S3 and also in Fig. 3
in the main text, leads to a successful ansatz for the
temperature dependence of the energy gap:

∆2
0(T ) =

βBCS
245

β245(T )
∆2

0,BCS(T ) (S8)

=
∆2

0,BCS(T )

1 +
δβ245(Tc0)

βBCS
245

(
1− 0.09

∆2
0,BCS(T )

k2BT
2
c0

) .

Here the factor 0.09 is chosen to roughly fit the data.
Since a similar expression with a freely chosen prefac-

tor could be constructed using the B-phase gap, it re-
mains as a task for the future to test whether Eqs. (S7)
and (S8) based on the relevant weak-coupling gap values
could quantitatively describe also the B phase or dis-
torted phases under confinement.

METASTABLE PLANAR PHASE
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FIG. S4. The superfluid frequency shift in the D = 80nm
cavity at 0.2 bar during a temperature sweep up after first
cooling down through Tc with the NMR field off (green stars)
vs. the usual NMR field on atH0 ≈ 30mT (red circles). Since
in both cases ∆f is negative and identical, the planar phase is
ruled out as a possibility. Superfluid transition temperature
Tc in the cavity is indicated by the yellow star and Tc0 in the
bulk marker by the black dashed line.

The A-phase order parameter in our experimental con-
figuration (d̂ ⊥ ẑ and l̂ ∥ ẑ) is written as [46]

∆(p̂) = ∆0 (p̂x + ip̂y) [|↑↑⟩+ |↓↓⟩] . (S9)

This form corresponds to l̂ = +ẑ and is degenerate with
order parameter of the form p̂x − ip̂y corresponding to

l̂ = −ẑ. The time-reversal invariant planar phase, which
has not been observed experimentally, has a long-range
order in the relative spin-orbit rotation and is degenerate
with the A phase in the weak-coupling limit. Its order
parameter is

∆(p̂) = ∆′
0 (−p̂x + ip̂y) |↑↑⟩+∆′

0 (p̂x + ip̂y) |↓↓⟩ . (S10)

In the weak-coupling limit these two phases have an iden-
tical energy gap, ∆0 = ∆′

0.
In its minimum-energy state P+, the planar phase

would have a positive frequency shift. However, just
like the B phase, the planar phase (which is the extreme
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limit of the B phase with planar distortion) can exist in
a metastable dipole-energy state P− supported by the
confinement and magnetic field [46, 65, 66]. This state
would have identical NMR signatures with the dipole-
unlocked A phase in the confining cavity: temperature-
independent magnetization, negative frequency shift, and
the same tipping-angle dependence. In the weak-coupling
limit, especially relevant at low pressures, the magnitudes
of the frequency shift would coincide as well, making the
phase identification based on NMR signatures alone chal-
lenging.

We never observed positive frequency shift arising
from the cavity, so P+ phase is out of the question.
Since in normal operation we always had the polariz-
ing H0 ≈ 30mT NMR field on, it was possible, how-
ever unlikely, to stabilize the P− phase within the cavity
each time we cooled down into the superfluid state. Such
a metastable phase could not exist without a magnetic
field and instead converts to P+ at fields below the dipole
field HD ∼ 3mT [65]. Thus, we ruled it out by cooling
through Tc in zero field at P = 0.2 bar. After reaching
T ≈ 0.75mK, we ramped the field slowly back up be-
fore starting to record the NMR signals and to sweep
the temperature up to characterize the superfluid fre-
quency shift. Positive frequency shift at this point would
have indicated an existence of a stable planar phase P+.
However, since ∆f remained unchanged compared to the
usual cooldowns (see Fig. S4), we confirmed that the
dipole-unlocked A phase was stable even here.

A-PHASE GAP SIZE QUANTIZATION

In very thin superfluid films the size quantization in
the momentum space results in the Fermi sphere tran-
sitioning into a series of Fermi disks, see illustration in
Fig. 4 in the main text. In such a state only the energy
gap values corresponding to the allowed momentum val-
ues are present, giving a possibility to avoid, e.g., any gap

nodes existing in the full bulk energy gap. In the deriva-
tion below we do not consider any possible modifications
to the pairing interactions by strong confinement.
The bulk A-phase energy gap is ∆A = ∆0| sin θ| where

θ is the angle in momentum space between the anisotropy
axis l̂ and p̂ [35]. Assuming for simplicity that the su-
perfluid film in z-direction is trapped within an infinite
potential well of width D, we get the set of allowed sub-
states kz(n) = πn/D where n is an integer. If we take
n0 to be the total number of Fermi disks for 0 < kz ≤ kF
and assume that the substate corresponding to n0 crosses
the pole, where θ = 0 and ∆A = 0, we have kz(n0) = kF
and n0 = kFD/π. The value of k at the Fermi surface is
kF = 7.9 nm−1 at 0 bar and 8.9 nm−1 at 34 bar.
We can write anywhere on the Fermi sphere (we as-

sume 0 ≤ θ ≤ π/2, the rest follows from the symmetry)

cos θ =
kz
kF

⇒ sin θ =

√
1− k2z

k2F
. (S11)

This allows us to write the A-phase energy gap as a func-
tion of n:

∆A(n) = ∆0 sin θ = ∆0

√
1− n2

n2
0

. (S12)

If one fine tunes the above system, e.g., by adjust-
ing P and/or D, to push the allowed values of kz up,
thus making n0 non-integer, the nodes in the gap and
the related low-energy states for the quasiparticles dis-
appear [5]. As a result, the energy gap corresponding to
the highest substate n < n0 becomes the smallest allowed
gap value, min(∆A).
The larger min(∆A) is the easier it is to cool the sys-

tem down to temperatures where the gaplessness of chi-
ral 3He-A is fully manifested and the physics of two-
dimensional film can be accessed [34]. For example, tak-
ing D = 10nm and P = 0bar, we would have n0 ≈ 25
and min(∆A) ≈ 0.28∆0. The corresponding tempera-
tures in 3He are accessible.
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