Evidence for a Spatially-Modulated Superfluid Phase of 3He under Confinement: Supplemental Material

Lev V. Levitin, Ben Yager, Laura Sumner, Brian Cowan, Andrew J. Casey, and John Saunders
Department of Physics, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK

Nikolay Zhelev, Robert G. Bennett, and Jeevak M. Parpia
Department of Physics, Cornell University, Ithaca, NY, 14853 USA
(Dated: 15 January 2019)

EXPERIMENTAL SETUP

The apparatus of this experiment is in most aspects identical to that used in Ref. [39] and described in its supplementary material. The main difference is the improved uniformity of the cavity, see Fig. S1, achieved through optimised nanofabrication, introduction of a partition wall and restricting the measurements to low pressure [41]. In addition the cell fill line was interrupted with a superfluid-leaktight cryogenic valve [41, 42] at 6 mK, to avoid gradual depletion of the 4He film due to the fountain effect.

TEMPERATURE CORRECTION

The thermometry in our experimental setup is based on monitoring the temperature of the silver sinter heat exchanger with a 195Pt NMR thermometer, calibrated against the 3He melting curve. In recent work on a $D = 0.2$ μm slab [43] the temperature gradient between silver sinter (at T_{Ag}) and helium (at T_{He}) in the heat exchanger was carefully determined for various surface 4He coverages. With 4He plating similar to the one used in this experiment, the correction was found to be

$$T_{He} - T_{Ag}^{3.5} = C,$$

(S1)

corresponding to thermal boundary resistance $R_{B}(T) \propto 1/T^{2.5}$. The constant C in (S1), determined by heat leak

FIG. S2: Temperature correction. (a) Relationship between temperatures T_{He} and T_{Ag} of helium and silver sinter in the heat exchanger. (b) Frequency shift in the A phase is expected to have the bulk value, since the energy gap in the A phase is not suppressed in a slab with specular walls. This is found to be the case after the temperature correction. Here the bulk frequency shift is modelled based on the initial slope $2f_{L} \partial \Delta f(T)/\partial(1 - T/T_{c})|_{T \rightarrow T_{c}} = 3.96 \times 10^{9}$ Hz2 measured in the $D = 0.2$ μm cavity with 98%-specularly scattering walls and the calculated temperature dependence of the weak-coupling A phase energy gap. Here the initial slope is defined as the slope of a straight line fitted between $0.9T_{c}$ and $1.0T_{c}$.

FIG. S1: Spectroscopic measurement of the thickness D of silicon-glass microfluidic cavities. The 1.1 μm cavity used in the experiment described here is compared to the 0.7 μm cavity from Refs. [32, 39]; inflated under pressure necessary to stabilise the B phase. In the present work the slab uniformity is improved, one of the reasons being the partition wall in the middle of the cell [41].
to the helium sample, is obtained from the suppression of bulk T_1, registered with NMR in the bulk 3He marker at the mouth of the fill line. Fig. S2 demonstrates that such correction with a slightly different C is adequate for the present experiment, which utilised the same heat exchanger. In this work the NMR pulses were applied rarely enough to have no effect on C.

HEATING BY NMR PULSES

NMR experiments on superfluid 3He under regular confinement in silicon-glass and fully-silicon cavities (Refs. [32, 39, 43] and this work) have manifested heating of an unidentified origin that couples to the confined liquid directly, Fig. S3a. Most heating occurs within 1 msec after the pulse (the duration of the probe NMR pulse plus the dead time of the NMR spectrometer), and the slab temperature is nearly constant for many msec afterwards, Fig. S3b. The dependence of the heating on duration τ and amplitude B_1 of the sine-wave pulses, Fig. S3c-f, is steeper than expected for linear dissipation ($Q \propto \tau B_1^2$), especially when taking into account that specific heat of 3He in the slab increases with temperature. This points towards an exotic origin of this parasitic effect.

In addition to the signatures shown in Fig. S3 we found that the heating is not resonant near the 3He Larmor frequency, and that heating due to pulses with the initial ‘antipulse’, Fig. 2b, only depends on the total duration and amplitude, but not on the length of the ‘antipulse’ part.

As shown in Fig. S3b, the free induction decay after a large pulse with characteristic $T_2^* \approx 3-10$ msec occurs at a nearly constant temperature, elevated above the

![Graph](image_url)
temperature T_0 of helium in the heat exchanger and fill line. The use of ‘antipulses’, Fig. 2b, allows us to measure the NMR response as a function of tipping angle at a constant elevated temperature. This is illustrated in Fig. S4. We note that the strong frequency dependence of NMR tipping by ‘antipulses’, renders them unusable away from their carrier frequency. For this reason B− is missing from Fig. S4, due to relatively large frequency range spanned by $\Delta f_-(\beta) \approx -1$ kHz $\times \cos(\beta)$. Probing B+ above the magic angle β^* is equally problematic and was not studied here in detail.

In contrast the 0.7 µm slab was probed with groups of large pulses that caused different heating, restricting such measurements to the $T \lesssim 0.5T_c$ limit where the temperature dependence of the frequency shifts is weak [32].

In this work we demonstrated that tipping angles up to 60° could be reached with 8 µm x 1.2 msec pulses, generating only $\Delta T \lesssim 10$ µK, small compared to the temperature range over which we probed the B phase gap distortion.

UNIVERSAL SCALING OF PLANAR DISTORTION

Within the Ginzburg-Landau regime, $T - T_c \ll T_c$, the effects of confinement on properties of the superfluid are determined by a single control parameter, the reduced thickness $D/\xi(T,P)$, where ξ is the coherence length. This universality breaks down at lower temperatures, i.e. see the supplementary of Ref. [39]. To study the A-B transition outside of the Ginzburg-Landau regime the coherence length has been defined as

$$\xi_\Delta(T,P) = \frac{\hbar v_F(P)}{\Delta_B(T,P)\sqrt{10}},$$ \hspace{1cm} (S2)

were v_F is the Fermi velocity and Δ_B is the bulk B phase gap. We observe that the weak-coupling quasiclassical calculations [44] of $\pi(T)$ and $Q(T)$ at different D collapse, see Fig. S5a-d, expressed as a function of D/ξ adopting a slightly different coherence length

$$\xi_{AB}(T,P) = \frac{D_{AB}(T,P)}{\pi\sqrt{6}},$$ \hspace{1cm} (S3)

where $D_{AB}(T,P)$ is the thickness of the slab at which the A to B transition occurs at temperature T and pressure P (the inverse of the $T_{AB}(D/\xi_0(P))$ function [34]). Here we restrict the discussion to the calculations for a slab with specular boundaries and recognise that the pressure P only enters the weak-coupling calculations via the pressure dependence of the bulk transition temperature $T_{c}^{\text{bulk}}(P)$ and the Cooper pair diameter $\xi_0(P) = \frac{\hbar v_F(P)}{2\pi k_B T_{c}^{\text{bulk}}(P)}$. We find that $\xi_{AB}/\xi_\Delta \rightarrow 1.0$ at $T \rightarrow T_c$ and $\xi_{AB}/\xi_\Delta \rightarrow 1.1$ at $T \rightarrow 0$.

FIG. S5: Universal scaling of planar distortion parameters π and Q with reduced slab thickness D/ξ_{AB}. (a-d) Calculations of planar distortion of spatially-invariant planar-distorted B phase at various D/ξ_0 [44]. See Eq. (S3) for the definition of the coherence length. (e-f) Comparison of these calculations to measurements on 0.7 µm slab (filled symbols) [32] and 1.1 µm slab (open symbols, showing together both warm-ups presented in Fig. 3). The horizontal bars represent the range of D/ξ_{AB} that can be probed in at given D and P limited by $T = T_{AB}$ and $T = 0$.

PLANAR DISTORTION: THEORY VS EXPERIMENTS

We compare the calculations discussed in the previous section with the NMR measurements of the planar distortion of the B phase in 0.7 and 1.1 μm slabs in Fig. S5e,f. The former, obtained at $P = 5.5$ bar and $T = 0.6 \text{ mK} = 0.4T_{\text{bulk}}$ are in good agreement with the theory in terms of both \bar{q} and \bar{Q}. This confirms that the strong coupling effects, known to increase with pressure, are not responsible for the reduced \bar{q} presented in this paper, Fig. 3 and Fig. S5f.

QUALITATIVE DISCUSSION OF DOMAIN CONFIGURATIONS

In this section we compare possible structures of domains using the length of domain walls per unit area of the slab L/A as a figure of merit of the free energy gain due to formation of domain walls. We consider a two-dimensional problem of energetic stability of thin domain walls with hard-core repulsion at distance W. Dots are assumed to be circular. We find $L/A = 1/W$ for the stripe phase, $L/A = \pi/2W\sqrt{3} \approx 0.91/W$ for hexagonal lattice and $L/A = \pi/4W \approx 0.79/W$ for square lattice, listed in Fig. 4b-d. The fact that these numbers are all close to each other demonstrates that the free energy of 1D and 2D modulated states is nearly degenerate, and only a detailed calculation can reliably identify the lowest energy state, taking into account the gradual spatial variation of the order parameter components across the domain walls and the optimum shape of dots.