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ABSTRACT: Advances in nanomechanics within recent
years have demonstrated an always expanding range of
devices, from top-down structures to appealing bottom-up
MoS2 and graphene membranes, used for both sensing and
component-oriented applications. One of the main con-
cerns in all of these devices is frequency noise, which
ultimately limits their applicability. This issue has attracted
a lot of attention recently, and the origin of this noise
remains elusive to date. In this article we present a very
simple technique to measure frequency noise in nonlinear
mechanical devices, based on the presence of bistability. It
is illustrated on silicon-nitride high-stress doubly clamped
beams, in a cryogenic environment. We report on the same
T/f dependence of the frequency noise power spectra as reported in the literature. But we also find unexpected damping
f luctuations, amplified in the vicinity of the bifurcation points; this effect is clearly distinct from already reported nonlinear
dephasing and poses a fundamental limit on the measurement of bifurcation frequencies. The technique is further applied
to the measurement of frequency noise as a function of mode number, within the same device. The relative frequency noise
for the fundamental flexure δf/f 0 lies in the range 0.5−0.01 ppm (consistent with the literature for cryogenic MHz devices)
and decreases with mode number in the range studied. The technique can be applied to any type of nanomechanical
structure, enabling progress toward the understanding of intrinsic sources of noise in these devices.
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Within the past decade nano-electro-mechanical
systems (NEMS) have developed with a broad
range of applications extending from physics to

engineering. In the first place, their size makes them very
sensitive transducers of force.1,2 This had been demonstrated,
for example, in the seminal work of D. Rugar et al., in which a
cantilever loaded by a magnetic tip reached a detection
sensitivity corresponding to the force exerted by a single
electronic spin at a distance of about 100 nm.3 More recently,
NEMS have been applied to the detection of small quantities of
matter (mass spectroscopy), with precision reaching the single
proton.4 Nowadays, even the quantum nature of the mechanical
degree of freedom is exploited for quantum information
processing.5

In all applications, the quality of the device is intrinsically
linked to its level of displayed noise.6 Specifically, frequency
noise in NEMS appears to be a key limiting parameter whose
physical origin is still unknown.7 Besides, only few quantitative
experimental studies are available in the literature,7−10

especially at low temperatures.11 The nonlinear frequency
noise reported for carbon-based systems12 is one of the most
striking results, revealing the complex nature that the
underlying mechanisms can possess.
Frequency noise (or phase noise6,9,11) can be understood in

terms of pure dephasing,12 making an analogy with nuclear
magnetic resonance (NMR), and its impact on a mechanical
resonance can be modeled experimentally by means of
engineered frequency fluctuations.13 The physical origin of
intrinsic frequency noise is indeed still elusive, since all
identified mechanisms studied explicitly display much weaker
contributions than the reported experimental values: adsorp-
tion−desorption/mobility of surface atoms,14 experimentally
modeled under a Xe flow,15 or the nonlinear transduction of
Brownian motion.16,17 These efforts in understanding the
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microscopic mechanisms at work in mechanical dephasing are
accompanied by theoretical support. The nonlinear dephasing/
damping has been proposed to originate in nonlinear phononic
interactions between the low-frequency mechanical modes and
thermal phonons.18 Finally, a common speculation reported in
the literature is that frequency noise is related to defects,6,11,19

which can be either extrinsic or constitutive of the material (like
in a glass). The presence of these so-called two-level systems
(TLS) is also proposed to explain damping mechanisms in
NEMS,21,22 and they have been shown recently to lead to
peculiar features (especially in the noise) for mesoscopic
systems such as quantum bits and NEMS.20

Properly measuring frequency noise is not easy; a neat
technique presented in the literature relies on cross-correlations
present in the two signals of a dual-tone scheme.7 Moreover, in
the spectral domain dephasing and damping are mixed.12,13,23

In order to separate the contributions, one has to use both
spectral-domain and time-domain measurements.12,13 All of
these techniques may not be well suited for large-amplitude
signals (especially when the system becomes bistable),
preventing the exploration of the nonlinear range where
nonlinear damping/dephasing may dominate.
In this article we present a method based on bifurcation

enabling a very simple measurement of frequency noise in
nonlinear bistable resonators. Building on this method, we
characterize the intrinsic frequency noise of high-stress silicon
nitride (SiN) doubly clamped beams in a cryogenic environ-
ment (from 1.4 to 30 K). In particular, we study the three first
symmetric modes (n = 1, 3, 5) of one of our devices and
demonstrate the compatibility of our results with existing
literature. The temperature dependence is indeed similar to ref
11, but we find an unexpected damping noise, which is amplified
through the bifurcation measurement. This result is distinct
from the reported nonlinear phase noise of ref 12, in which the
device was not bistable. The phenomenon seems to be generic,
and we discuss it in the framework of the TLS model. Note that
our results demonstrate the existence of an ultimate limit to the
frequency resolution of bifurcation points in nonlinear
mechanical systems.

RESULTS AND DISCUSSION

A typical doubly clamped NEMS device used in our work is
shown in Figure 1. It consists of a 100 nm thick SiN device
covered with 30 nm of Al. The width of the beam is 300 nm,
and the length L = 250 μm. Another similar sample of L = 15
μm has been characterized. The beams store about 1 GPa of
tensile stress, and we define A to be their rectangular cross-
section. For fabrication details see Methods below. The device
is placed in a 4He cryostat with temperature T0 regulated
between 1.4 and 30 K, under cryogenic vacuum of ≤10−6 mbar.
The motion of the beam is driven and detected by means of the
magnetomotive scheme.24,25 For experimental details see
Methods below.
A Laplace force F(t) = F0 cos(2πf t) with F0 ∝ I0LB0 is

created with a static in-plane magnetic field B0 and an ac
current I0 fed into the metallic layer (Figure 1). Fields B0 on the
order of 1 T and currents I0 up to 0.5 μA have been used. The
detected signal is the induced voltage V(t) proportional to
velocity. It is measured with a lock-in from which we can obtain
the two quadratures X, Y of the motion. We call

= +R X Y2 2 the amplitude of the motion (at a given
frequency), defined in meters peak. For all the T0 and B0

settings used in the present work, the Al layer was not
superconducting. A key feature of the magnetomotive scheme
is that it enables the ability to tune the Q factor of the detected
resonances:24 this is the so-called loading effect.
At low drives, in the linear regime, the quality factor of the

resonance Q = f 0/Δf is defined from the line width Δf and the
resonance frequency f 0 of the mode under study. We consider
here only high-Q resonances Q ≫ 1. In this limit, the X peak is
a simple Lorentzian, whose full-width at half-height gives Δf.
For large excitation forces, our doubly clamped beams’
mechanical modes behave as almost ideal Duffing resona-
tors.26,27 A typical Duffing resonance is shown in Figure 2. The
maximum of the resonance shifts with motion amplitude as fmax
= f 0 + βRmax

2 . β is the so-called Duffing parameter. We assume β
> 0, but the case β < 0 is straightforward to adapt. Rmax is the
maximum amplitude of motion; it always satisfies Rmax = F0Q/
k0 with very good accuracy.28 k0 is the mode’s spring constant
with =

π
f k m/0

1
2 0 0 and m0 the mode mass. In the nonlinear

Duffing regime, a damping parameter Δf can still be defined
from the Q factor deduced from the peak height Rmax. When
frequency noise is negligible, the so-called decoherence time T2
= 1/(πΔf) defined from such frequency-domain measurements
is just equal to T1, the relaxation time of the amplitude R in the
time domain.13

When ≥R Rmax
2
3 s a response hysteresis opens29 (see

Figure 2). The point in the (R, f) space at which this begins is

called the spinodal point, with =
β

ΔR f
s

1
31/4 . Beyond this point,

two stable states coexist in a range of frequencies, with the
system jumping from one to the other at f up (in an upward
frequency sweep) and fdown (for downward). These are the two
bifurcation points. The maximum amplitude of the resonance is
reached only on the upper branch. These frequencies are
written explicitly:

Figure 1. Device and setup. SEM image of the 250 μm device
measured in this work. The gate electrode (brown) is not used
here. The actual NEMS device is the red-colored string in between
the two (light blue) electrodes. The lock-in detector (violet),
magnetic field, and drive generator (in green) are also depicted in a
schematic fashion to illustrate the magnetomotive technique.
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down 0 down
2

down
2 2 2
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s down s

down 0 down
2

down
2 2 2

down

1/4

s (2)

These functions are displayed in Figure 3. As we increase the
driving force F0, the maximum amplitude Rmax linearly increases

while the peak position shifts quadratically. The upper
bifurcation point f up then shifts monotonically toward higher
frequencies, with a monotonically increasing amplitude Rup
when F0 is increased. On the other hand, the lower bifurcation
point fdown has first an amplitude Rdown that decreases ( fdown
being given by case 1 above), and then it increases again ( fdown
being then defined through case 2). At the spinodal point Rs,

= = = + Δf f f f fup down s 0
3

2
.

The method we present builds on the work by Aldridge and
Cleland:30 the bifurcation positions are essentially arbitrarily
well-def ined (in the sense that in an ideal system only the
thermal activation of the bifurcation process will limit the
stability) and can be used for sensing/amplifying. We thus
devise a technique enabling the characterization of frequency
fluctuations themselves; indeed, the imprint of frequency
fluctuations had been reported earlier in noise-induced
bifurcation relaxation.31 We show in Figure 4 histograms
obtained on the fdown frequency position of the resonance of
Figure 2. They are measured by ramping the frequency down
from above f up at constant speed and measuring the switching
to the higher branch through a threshold detection. We repeat
this protocol typically 1000 times to acquire enough statistics
(see Figure 4 graph A left inset). The histogram obtained
directly from the frequency time trace is then fit to a Gaussian
(of standard deviation σf, graph A in Figure 4), while the power
spectrum Sf( f) of the fluctuations is also computed (defined as
the FFT of the autocorrelation function). It displays a 1/f-type
structure (see Figure 4A right inset).
Some precautions have to be taken in order to ensure that

the acquired data are unbiased: we first make sure that the
bifurcation jump occurs within a single point of the acquisition
trace (we thus have to lower the filtering time constant of the
lock-in compared to Figure 2). Typically, we take one point
every 40 ms with a frequency resolution typically 10 times
smaller than the measured Gaussian spread. Second, we verify
that we do not suffer from Brownian-type motion amplitude
noise (at the mode frequency) that would activate relaxation of
states when we are close enough to the bifurcation points.30,31

Such activated bifurcation generates non-Gaussian and
asymmetric statistics, which is ramping-speed dependent.30

No such characteristics have been seen in our experiments: we
first check that the ramping speed (of order 0.1−1 Hz/s) does
not change the measured histogram, and second, we add a
controlled amount of force noise (at the mechanical resonance)
in order to see when relaxation is indeed noise-activated.31 We
see that a force noise equivalent to a bath temperature of about
106 K has to be reached in order to affect the frequency
statistics. Note that 106 K is also the range of effective
temperatures that are needed in order to see (asymmetric)
frequency fluctuations transduced from Brownian motion
through the Duffing nonlinearity.17 Clearly, at 4.2 K with no
added noise no such phenomena can occur. In the following,

Figure 2. Nonlinear (Duffing) resonance. (A) Duffing resonance line (X and Y quadratures) measured on the 250 μm device at 4.2 K under
vacuum, for a drive force of 81 pN, in a 1 T field. The directions of frequency sweeps are depicted by arrows. Vertical dashed lines indicate the

two bifurcation points f up,down. (B) Amplitude = +R X Y2 2 corresponding to A. Bifurcation points are indicated with their amplitudes
Rup,down.

Figure 3. Bifurcation branches. Calculated bifurcation frequencies
from eqs 1 and 2 for the 250 μm device and magnetomotively
loaded Q of 5000 (1 T field).
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we make sure that no extra force noise is injected in the setup
while measuring frequency fluctuations. Finally, the frequency
drifts of our generators are characterized: we take two of them
of the same type and measure the frequency stability of one
against the timing of the other. Slow frequency fluctuations
occur at the level of 1 mHz for 1 MHz signals over minutes,
and 10 mHz for 10 MHz. This is at least 2 orders of magnitude
smaller than what is seen here over the same periods of time
and can be safely discarded.
We see that frequency fluctuations display a typical 1/f-type

behavior (right inset in Figure 4 A), as reported by others.7,11

Indeed, the time trace has clearly some slowly drifting
component (left inset in the same graph). This means that
the statistics obtained depend on the acquisition bandwidth. For
pure 1/f noise, the standard deviation σf (which is the square
root of the power spectrum integral) depends on

f fln( / )high low , with f high the fastest frequency probed (defined

from the time needed to acquire one bifurcation trace Δtmin,
about 10 s) and f low the lower frequency cutoff (set by the total
acquisition time, about 3 h). In order to be as quantitative as
possible, we look for an estimate of frequency noise, which is as
independent from the protocol as possible. We therefore study
the f requency jumps δf(t) = fdown(ti+1) − fdown(ti) instead of
fdown(t); see Figure 4B left inset. The variance of this quantity
σδf
2 is the well-known Allan variance,32 computed for acquisition
time Δtmin = ti+1 − ti. Note that this quantity safely suppresses
equipment low-frequency drifts (such as, besides the one
characterized for the generator, temperature drifts due to the
4He bath).
For a perfectly 1/f noise, the Allan variance at Δtmin → 0 is

independent6 of f high and f low (see Methods). However, our
power spectrum fits S0/f

1+ϵ with ϵ ≈ 0.4 ± 0.2. We calculate
that over the most extreme settings that have been used, our
Allan variance should not have changed by more than 50% (and
in the data presented here by much less). Moreover, to prove
that the Δtmin → 0 assumption can be applied, we display in the
right inset of Figure 4B the power spectrum Sδf( f) of δf
fluctuations: the data match the spectrum ∝ f directly
computed from the fit of Sf( f).
We can then compare the values of σf and σδf that have been

obtained. According to theory (see Methods) the first one
should be about twice the second one in our conditions. This is
indeed what we see in Figure 4, confirming that σδf is a good
quantitative measurement of frequency fluctuations. Besides,

the frequency stability defined as σδf/f 0 ≈ 0.3 ppm falls within
the expected range according to reported measured devices.7

We thus demonstrate that our simple technique is functional:
the key being that since the spectrum is 1/f-type, we do not need
to be especially fast to characterize frequency noise. With a phase
locked loop setup one could measure fluctuations on much
shorter time scales,10 but our 10 s repetition rate is perfectly
well adapted.
We now build on our method to thoroughly characterize

frequency noise in SiN string devices. Let us apply this
technique to the upper bifurcation point f up. The method
explained above is easily reversed in sweep direction and
threshold detection. A similar time trace, spectrum, and
histogram to Figure 4 obtained this way are shown in Figure
5. We see that the power spectrum displays the same 1/f1+ϵ law

with ϵ ≈ 0.4. This is true for the complete study we realized on
the same device and proves that different data sets can be
consistently compared. The histogram is again Gaussian. But
surprisingly, σδf is now much bigger on the upper branch than on
the lower one. We therefore make a complete study as a
function of driving force (i.e., motion amplitude). We discover
that the standard deviation σδf depends quadratically on motion
amplitude R. Measuring at another magnetic field B0, we find
that it also depends linearly on the Q of the mechanical mode.
However, measuring at different temperatures T0 in the 1.4−30

Figure 4. Statistics on frequency at low amplitudes. (A) Histogram obtained on the fdown relaxation point of Figure 2 (left inset: actual
frequency time trace; right inset: power spectrum of the frequency fluctuations, displaying 1/f-type structure). (B) Histogram obtained on the
frequency jumps δf computed from the fdown time trace (left inset: δf time trace; right inset: power spectrum). The lines are Gaussian fits, and
the power-law dependencies of the spectra are discussed in the text.

Figure 5. Large-amplitude statistics. Similar graphs to those in
Figure 4 were obtained on the upper bifurcation point f up
(frequency jumps time trace in the left inset, power spectrum of
frequency in the right inset, and histogram of δf in the main part of
the graph). The line is a Gaussian fit, while the power spectrum
follows 1/f1.4 (see text).
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K range, we realize that the small-amplitude value obtained is
temperature-dependent, while the large-amplitude one is not.
This suggests the normalized plot of Figure 6, where the

increase σδf(T, Rup,down) from the extrapolated σδf(T, Rs) is

plotted against the normalized variable Rup,down
2 /Rs

2. The
notation Rs ≈ 0 means that the value is obtained from the
linear fit, extrapolating at R → 0. In order to verify the
robustness of the result, we realize the same analysis with a
similar device of 15 μm length. Some typical data are displayed
in the inset of Figure 6. The noise properties obtained for this
other device are very similar to the initial 250 μm long beam
(but the quadratic dependence is different). However, the
spectra better fit with ϵ ≈ 0.2 ± 0.2.
We proceed with similar measurements performed on modes

n = 3 and n = 5 of the 250 μm beam sample. All spectra display
the same 1/f1.4 dependence as the n = 1 mode. The same
normalized plots are displayed in Figure 7. However, this time
the inferred quadratic dependencies are much weaker.
The nonlinear dependence of the frequency noise is rather

unexpected; indeed, the nonlinear dephasing features observed
for carbon-based devices12 have not been reported for nitride

structures.13 A possible source for such an effect could be a
purely intrinsic property of the bifurcation effect itself. However,
since our statistics could not be altered by reasonable changes
in effective temperatures and frequency-sweep ramping speeds,
such an explanation is improbable. If we then suppose the
bifurcation process to be perfectly ideal, the nonlinear
frequency noise observed should originate in one of the
parameters defining the bifurcation frequencies. When the
experiment is performed reasonably far from the spinodal point
(which is always our case), we have

δϕ β≈ + +f f t R( )up 0 up
2

(3)

δϕ β≈ + +f f t R( ) 3down 0 down
2

(4)

≈R Rup max (5)

β
≈

Δ⎛
⎝⎜

⎞
⎠⎟R

R f1
2down 2/3

max
1/3

(6)

adapted from eqs 1 and 2, where we explicitly introduced the
stochastic frequency variable δϕ(t). For strings26

β ∝ ( )m f1/( ) E A
L0 0
Y

3 , the nonlinear frequency noise could be

caused by (Gaussian) fluctuations of the Young’s modulus EY =
E0 + δE(t). However, to have the measured characteristics, this
noise would have to be δE/E0 ∝ 1/Δf and mode-dependent,
which is difficult to justify: this explanation seems again
unphysical.
The only possibility left is an internal motional noise with Rmax

= Rmax0 + δR, leading to fluctuations β∝ δ⎜ ⎟
⎛
⎝

⎞
⎠ RR

R max
2

max0
0
. The

proper scalings, as reported in Figures 6 and 7, are thus only

achieved by assuming damping noise δΓ(t) with = −δ δΓ
Δ

R
R fmax0

.

A s a r e s u l t , i t f o l l o w s f r o m e q s 3 − 6 ,

δϕ β≈ + + − δΓ
Δ( )f t f t R( ) ( ) 1 2 t

fup 0 max
2 ( )

0
,

δϕ β≈ + + Δf t f t f R( ) ( ) ( )down 0
3

2
2

max
2 1/3

4/3 0
together with

δϕ= + + Δ + δΓ
Δ( )f t f t f( ) ( ) 1 t

fs 0
3

2
( ) . This means that

both bifurcation frequencies suffer from frequency noise δϕ,
while only the upper branch experiences damping fluctuations
δΓ: they are amplif ied by the measurement method through a
factor βRmax0

2 /Δf. Note that the frequency noise extrapolated at
R → 0 on the upper branch matches the one of the lower
branch, but does not equal the one obtained at the spinodal
point, simply because the expressions eqs 3−6 do not apply
near Rs; this is emphasized through the writing Rs ≈ 0 in our
graphs.
The Allan deviation σδf extrapolated to R → 0 is thus

characteristic of the frequency noise δϕ, while the slopes of the
graphs in Figures 6 and 7 are 2

3
times the Allan deviation σδΔf

of the damping fluctuations. To our knowledge, the latter has
not been reported in the literature so far. The mode parameters
together with these 4.2 K frequency and damping noise figures
are summarized in Table 1. σδΔf is temperature-independent in
the range studied, while σδf

2 is linear in T0; this is displayed in
Figure 8. The same temperature dependence of frequency noise
has been reported in ref 11 (within an overall scaling factor) for
a very similar device. In order to compare the various results,

Figure 6. Universal plot for mode 1. Frequency noise increase vs
squared amplitude normalized to the spinodal value Rs, for the first
mode n = 1 of the 250 μm device. Various T0 and B0 (hence Q)
have been used (see legend). Squares stand for upper branch
bifurcation; triangles for lower. Inset: same result obtained with a
15 μm beam having β = 1.1 × 1019 Hz/m2 (4.2 K and Q = 17 000
red squares; 800 mK and Q = 31 000 blue dots; the magnetomotive
field broadening was negligible). The green line is a linear fit (see
text).

Figure 7. Universal plot for modes 3 and 5. Normalized frequency
noise plot for the same 250 μm device, for modes n = 3 (left) and n
= 5 (right). The lines are linear fits (see text).
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values from the literature are presented in Table 2. We give the
Allan deviation when it is reported; otherwise we list the direct
frequency noise. The damping noise in the third line is
recalculated from Figure IV.19 in ref 33.
We can only speculate on the microscopic mechanisms

behind the reported features. The entities generating such noise
are thought to be atomic-scale two-level systems, which could
be defects or intrinsic to the materials in use.6,11,20,33 A
signature that also supports this view is the presence of
telegraph f requency noise in many NEMS experiments (see, e.g.,
ref 33). Ref 6 analyzed frequency noise in beams, i.e., structures
with no built-in stress. These authors assumed that thermally
activated motion of a defect in a double-well potential from one
minimum to the other caused a shift in the local Young’s
modulus. The motion of many such defects (following the
mathematical arguments of ref 19) then causes a change in the
average Young’s modulus and consequently a change in the
resonance frequency of the beam with power spectrum ∝ T/f.
The same argument was applied in ref 11 to analyze the
frequency noise of string structures, where the built-in stress is
large, even though the resonance frequency is nearly
independent of the Young’s modulus in the high-stress limit.
We thus believe that it is more appropriate, in the
interpretation of the present measurements on strings, to
consider frequency fluctuations due to stress f luctuations.
Indeed, point defects in crystals are characterized as elastic

dipoles that cause an orientation-dependent change in the
strain (and consequently the stress) of a crystal.34

In our highest Q device, for the first flexure n = 1 frequency
fluctuations at 4.2 K represent about 20% of the line width, and
damping fluctuations about 5%. These parameters fall with
mode number n (see Table 1), while both frequency f 0 and line
width Δf increase. This means that the effect of fluctuations is
the strongest on the first mode, but is usually difficult to visualize
on standard frequency sweeps or time decay data; it is for
instance expected that for a device rather equivalent to our 250
μm beam the measurements performed in ref 13 did not report
any such features (see Methods).

CONCLUSION

In this article we present a very simple and reliable method to
measure and characterize frequency noise in bistable resonators.
The technique has been employed to describe thoroughly the
intrinsic frequency noise of high-stress silicon-nitride doubly
clamped beams. The measurements have been performed at
low temperatures in a cryogenic vacuum, on two devices of very
different lengths/fundamental resonance frequencies. The three
first symmetric flexural modes of the longest beam have been
studied.
We report on the Allan deviations of the frequency noise,

presenting the same basic features as in refs 7 and 11: spectra of
1/f-type, scaling linearly with temperature. The reported
magnitudes of the noise δf/f 0 fall in the 0.5−0.01 ppm range,
as expected for MHz devices.
We have also found unexpectedly damping f luctuations, which

are amplified in the vicinity of bifurcation points. Our technique
seems the most adapted for the detection and the quantification
of such a noise process to date. We find that damping noise can
be as large as about 5% of the total width of the resonance peak
in our highest Q devices. It also sets a finite resolution
attainable for the measurement of the frequency position of
bifurcation points.
These features seem ubiquitous to all NEMS devices, and we

do believe that damping noise and frequency noise originate in
the same microscopic mechanism. But the latter remains
elusive, and the most discussed candidate is based on two-level
systems.6,11 Because of the strength of the frequency noises
reported here for high-stress devices, we propose that TLS are
responsible for noise on the stored stress in the structure instead
of the Young’s modulus, as it was proposed in earlier papers
discussing stress-free beams (e.g., ref 6).

Table 1. Mode Parameters, Frequency, and Damping Fluctuations for Modes n = 1, 3, and 5 (250 μm Long Beam, 4.2 K)

mode number n freq f 0 unloaded Q duffing β σδf at Rs ≈ 0 σδΔf from Rup ≫ Rs

n = 1 0.905 MHz 600 000 ± 10% 8.5 ± 0.5 × 1015 Hz/m2 0.28 ± 0.05 Hz 0.11 Hz ± 10%
n = 3 2.68 MHz 450 000 ± 10% 1.25 ± 0.2 × 1017 Hz/m2 0.1 ± 0.02 Hz 0.005 Hz ± 15%
n = 5 4.45 MHz 400 000 ± 20% 5.7 ± 0.5 × 1017 Hz/m2 0.09 ± 0.02 Hz 0.0025 Hz ± 30%

Figure 8. Temperature dependence of frequency fluctuations. Allan
variance σδf

2 as a function of temperature (first mode of 250 μm
device), as obtained for small motion R → Rs ≈ 0. The line is a
linear fit, with the T0 = 0 K extrapolated value emphasized by the
arrow (see text). The variance of damping fluctuations σδΔf

2 is
constant in the same range of temperatures.

Table 2. Mode Parameters, Frequency, and Damping Fluctuations for Different Devices (Fundamental Flexure n = 1)a

device freq f 0 Q σδf or σf 0 σδΔf

250 μm SiN/Al dc beam 4.2 K (this work) 0.905 MHz 600 000 ± 10% 0.28 ± 0.05 Hz 0.11 Hz ± 10%
15 μm SiN/Al dc beam 4.2 K (this work) 17.5 MHz 18 000 ± 10% 1.45 ± 0.1 Hz 0.6 Hz ± 10%
2 × 3 μm Si/Al goalpost 4.2 K, refs 31, 33 7.1 MHz 4700 ± 10% 1 ± 0.5 Hz on f 0 0.35 Hz ± 10%
380 μm SiN dc beam 5 K, ref 11 0.64 MHz 2 200 000 0.01 Hz on f 0 X
3.2 μm Si cantilever room temp, ref 7 45.2 MHz 6000 36 Hz X

aThe damping noise figure in the third line is recalculated from Figure IV.19 in ref 33.
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Our technique can be easily adapted to any type of device,
including MoS2 and carbon-based systems in which nonlinear
frequency noise has been reported.12 We think that it should
help advance the understanding of the underlying fundamental
microscopic mechanisms that also significantly degrade the
properties of existing NEMS devices and hinder their
applicability.

METHODS
Device Fabrication. The structure was fabricated using e-beam

lithography on a silicon substrate covered with a 100 nm SiN layer.
The stochiometric nitride was grown using low-pressure chemical
vapor deposition at the Cornell NanoScale Science & Technology
Facility. It stores a biaxial stress of about 1 GPa. A 30 nm aluminum
coating has been evaporated onto the sample in a Plassys e-gun
machine. Its resistance at low temperature is about 1 kΩ for the 250
μm long device and 100 Ω for the 15 μm one. It served as a mask for
the structure during the SF6 reactive ion etching step used to pattern
the SiN. The structure was then released using a final XeF2 etching of
the underlying silicon.
Measurements. The voltage drive was delivered by a Tektronix

AFG3252 generator, through a 1 kΩ bias resistance, which created the
drive current. The motion was actuated with the magnetomotive
technique through a force F(t) = I0ζLB0 cos(2πf t), which also leads to
the detection of the velocity x ̇(t) of the oscillation through a voltage
V(t) = ζLB0 x ̇(t). ζ is a mode-dependent shape factor.24 In the high-Q
limit, the velocity in frequency domain is iω0 x(ω) with ω0 = 2πf 0,
hence an inverted definition for the signal quadratures X and Y with
respect to displacement x(t). Due to the symmetry of the scheme, only
symmetric modes (n = 1, 3, 5, ...) can be addressed (ζ = 0 otherwise).
The magnetic field was generated with a small superconducting coil
fed with a 10 A Kepco current source. The detected signal was
processed with a Stanford SR 844 RF lock-in amplifier. Due to the
finite impedance of the electric circuit seen by the NEMS (whose own
characteristic impedance varies as B0

2), the mechanical resonances are
loaded by an additional damping ∝ B0

2. This provides the ability to
tune the quality factors in situ.24 Our calibration procedure is described
in ref 25. It enables us to give all mechanical parameters in S.I. units
(we thus quote X, Y in meters), while minimizing the loading effect.
Loading is negligible for the 15 μm beam, but still large in the 250 μm
device.
Spectra Mathematical Properties. Let us consider a frequency

power spectrum for the stochastic resonance frequency ω0 = 2πf 0 of
type Sω0

(ω) = A0/|ω|
1+ϵ (defined from −∞ to +∞). The variance can

be defined from the integral of the spectrum, leading to

∫σ ω= =ω π ω π

ω ω−

ϵ

−ϵ −ϵ⎡
⎣⎢

⎤
⎦⎥S d A2 1

2
2
20 0

0 low high with ωlow and ωhigh the lower

and higher frequency cutoffs imposed by the experiment. For ϵ → 0

we have σ ω ω∝ω ln[ / ]high low0
. Since δω = ω0(ti+1) − ω0(ti) ≈

∂ω0(t)/∂t × Δtmin when Δtmin → 0, we have Sδω(ω) ≈ Δtmin
2 ω2Sω(ω).

Thus, σ ω≈δω π

ω ω ωΔ −ϵ −

− ϵ

−ϵ⎡
⎣⎢

⎤
⎦⎥

A t2 2
2

( )

2 high
1 ( / )

1 / 2
0 min high

2
low high

2

. The Fourier

transform imposes Δtminωhigh ≈ π, and in the case ϵ → 0 we obtain

σ ω ω∝ −δω 1 ( / )low high
2 , which is essentially independent of the

cutoffs.6 For ϵ ≠ 0, a small dependence on the bandwidth appears in
the Allan variance σδω

2 . For our acquisition bandwidths, this does not
result in a too large scatter in data (within error bars).
Impact on Frequency-Domain and Time-Domain Measures.

With a noise of type Sω0
(ω) = A0/|ω|

1+ϵ, we can take as an estimate of
the relevant fluctuations time scale τc

−1 ≈ ωlow/π: the weight is at the
lowest accessible frequencies. We thus always verify σω0

τc ≫ 1, which
means that the phase diffusion of the mechanical mode is in the
inhomogeneous broadening limit, in analogy with nuclear magnetic
resonance.13,16,17 In the frequency domain, the response χmeas(ω) is
the convolution of the standard (complex-valued, defining the two
quadratures) susceptibility χ(ω) with the (Gaussian) distribution of

frequencies δφ πσ δφ σ= −ω ω( )p( ) 1/ 2 exp /2 1
2

2 2
0 0

, with δφ = 2πδϕ in

rad/s. This means that at each scanned frequency ω the measurement
is performed over a long enough time scale such that all fluctuations
are explored. On the other hand, the small damping fluctuations are
simply filtered out by the acquisition setup (here, a lock-in amplifier):
they have no relevant impact on the resonance peak measured, even at
very large motion amplitudes. We conclude that only frequency noise
will contribute to the definition of a T2, the decoherence time
involving relaxation T1 and dephasing σω0

.13 In the time domain, in the
linear regime the complex susceptibility χm̅eas(t) (i.e., decay of the two
quadratures) is simply the Fourier transform (FT) of χmeas(ω). It can
also be written χm̅eas(t) = ⟨exp(iδφt)⟩ χ(̅t) with χ(̅t) the FT of χ(ω)

and δφ σ⟨ ⟩ = − ω( )i t texp( ) exp 1
2

2 2
0

the average over frequency

fluctuations. In the nonlinear regime, the average decay of the two
q u a d r a t u r e s i s w r i t t e n a s

χ δφ δγ κ χ̅ = ⟨ ⟩ − ̅
β

ωΔ

⎛
⎝⎜

⎞
⎠⎟t i t i t t t( ) exp( ) exp 2 [ ] ( )

R
meas

max0
2

w i t h

κ = ω
ω

− − Δ
Δt[ ] t

t
1 exp[ ]

and χ(̅t) defined in ref 28, the second average

being over damping fluctuations δγ = 2πδΓ; we write Δω = 2πΔf in
rad/s. The function κ is characteristic of the decay of the nonlinear
frequency pulling due to the Duffing term,28 ∝ Rmax0

2 . In practice, this
assumes that both quadratures are measured independently, averaging
many decay traces starting from the same (noisy) t = 0 amplitude Rmax,
imprinted by the slow fluctuations of damping δγ. The second average
c a n b e e x p l i c i t l y c a l c u l a t e d :

δγ κ σ κ− = −
β

ω

β

ω δ ωΔ Δ Δ
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥i t t t texp 2 [ ] exp 2 ( [ ])

R R1
2

2
2 2max0

2
max0
2

. In the

time domain, the impact of damping fluctuations (of variance σδΔω
2 ) is

thus amplif ied by the same term as in the bifurcation measurement:
β

ωΔ

R max0
2

. However, to have a measurable effect (within experimental

error bars) both amplitude Rmax0 and fluctuations σδΔω have to be very
large; in experiments of the type of ref 13 based on devices similar to
our 250 μm, no such effect has been reported. Measuring the decay of
the two quadratures leads then to the definition of T̅2, roughly
equivalent to T2.

13 Note that the decay of the motion amplitude |χ(̅t)|2

remains unaffected by frequency and damping noise, leading to the
proper T1 definition.

13
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