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Supplementary Note 1. Volume Flow and Heat Flow in a confined channel.

We estimate the fountain pressure that results from the inflow of superfluid in response to heat

applied to the fork in the isolated chamber via the London equation1:

∆P = ρS∆T, (1)

where ∆P [Pa] is the fountain pressure generated, ρ [kgm−3] is the mass density, S [JK−1kg−1]

the entropy density of the liquid and ∆T [K] is the temperature difference along the channel.

For 22 bar at 1.15 mK (0.5 Tc), we estimate that for a 25 µK temperature difference, the foun-

tain pressure would be of order 8.6 × 10−3 Pa using values for S derived from the literature2.

Corresponding values for the pressure difference generated in response to the 25 µK temperature

difference at 0.62, 0 bar are listed in Supplementary Table 1 at T/Tc= 0.5. The pressure differ-

ences at low pressure are smaller by about a factor of 4, reflecting the entropy and temperature

of the liquid at low pressure. Such small pressure differences would be difficult to measure using

direct means, especially given the requirement of a small volume in the isolated chamber.

The size dependent effective viscosity, ηEFF is related to the bulk viscosity (ηbulk) by a vis-

cous mean free path, λη dependent scaling factor, “s”, so that ηEFF = sηbulk. In the past3, the

factor s had been calculated for a 135 µm tall channel but can be adapted to the 1.1 µm channel

from knowledge of the Knudsen number, Kn = λη/d, where d is the channel height. We read

off λη from Figure 8 for each of the 3 pressures at 0.5 T/Tc, and calculate the corresponding Kn.

The Knudsen number is then used to estimate the correction factor s. A simplified expression

for the upper bound for the correction factor is given by s = 1/(1 + 2Kn). For the Supplemen-

2



tary Table 1, we computed the correction factor based on the graphs in Reference [3]. For 0 bar

we found the limiting (large Knudsen number behavior) to be s = 0.37 × K−1.5
n and for 22 bar

s = 0.09 × K−1.33
n , where we have included the effects of Andreev scattering from surfaces as

described in the literature3. The values for ηbulk [Pa·s], and Kn, and corresponding s values are

listed in Supplementary Table 1. We note that in Reference [3] it was found that at the lowest

temperature and pressure, the experimental results showed more slip than accounted for by theory.

This would imply that under strong confinement, the scaling factor s may underestimate slip.

To compute the heat conducted, we first need an estimate of the volume rate of flow of

normal fluid (dV/dT ). This is established by geometrical properties, the fountain pressure ∆P

(from Supplementary Equation 1) and ηEFF.

dV/dt = ∆P · Z−1η−1
EFF, (2)

where the impedance for a rectangular channel, Z = 12 l/wd3 is defined by its length l = 100 µm,

width w = 3 mm, and height d = 1.1 µm, resulting in Z = 3×1017 m−3. The result for the volume

flow is also listed in Supplementary Table 1.

The heat transfer rate that would result from the back flow of normal fluid can be written as:

dQ

dt
= ρTS(T )

dV

dt
=
Tρ2S2(T )∆T

ZηEFF
. (3)

We used Supplementary Equation 3 to calculate the resulting heat flow dQ/dt. It is evident from
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Pressure

[bar]

T/Tc ∆P /25µK

[Pa]

ηbulk

[Pa·s]

λη[cm] Kn s ηEFF

[Pa·s]

dV/dt

[m3s−1]

0 0.5 1.8×10−3 0.036 2.5× 10−2 230 1.0× 10−4 3.6× 10−6 1.7×10−15

0.62 0.5 2.1×10−3 0.030 2.0× 10−2 180 1.5× 10−4 4.5× 10−6 1.6×10−15

22.0 0.5 8.6×10−3 0.0021 1.25×10−3 11 3.7× 10−3 7.8× 10−6 3.8×10−15

Table 1: Bulk, Effective Viscosity and Flow with 25 µK difference across channel The pres-

sure difference, Bulk viscosity, Viscous mean free path, Knudsen number, correction fac-

tor “s”, and effective viscosity, together with volume flow resulting from a 25 µK tempera-

ture difference for the three different pressures studied, all calculated at 0.5Tc.

Pressure

[bar]

Density

[kg·m−3]

Flow

[m3·s−1]

Temperature

at 0.5 Tc [K]

Entropy

Density

[J/K·Kg]

dQ/dt [W]

0 81.4 1.7× 10−15 4.64× 10−4 0.90 5.8× 10−17

0.62 83.0 1.6× 10−15 5.06× 10−4 0.99 6.7× 10−17

22.0 110 3.8× 10−15 1.15× 10−3 3.15 1.5× 10−15

Table 2: Entropy and Heat Flow with 25 µK difference across channel The density, vol-

ume flow (from Supplementary Table 1), temperature and Entropy density computed from

Reference [2] to yield the expected heat flow from Supplementary Equation 3.
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the results in Supplementary Table 2 that the thus calculated heat flow (accounting for slip) is

much too small to initiate any observable equilibrium temperature increase in the HEC fork. The

estimated values of the hydrodynamic thermal conductivity κHYD compared to the measured value

of κ(Tc) are of order 10−4 (or smaller) at all pressures and temperatures and therefore negligible.

We show the calculated κHYD at 0 bar and at 22 bar using both the simplified correction factors for

s and the value of s from Reference [3] in Supplementary Figure 1.

We can estimate when the thermal conductivity of the diffusive and hydrodynamic (counter-

flow) terms might be comparable. In a large enough channel (mm size) we expect ηEFF → ηbulk

(s=1). Comparing Supplementary Figure 1 to Figure 5(b) in the main text, the calculated thermal

conductivity κHYD ∝ Z−1η−1
EFF is ∼ 10−4 smaller than the measured κEFF for a 1.1 µm channel.

Since ηEFF is reduced by a factor of 10−4 in the Knudsen regime (Supplementary Table 1), scaling

argues that Z would have to decrease by 10−8 to make the two thermal conductivity contributions

comparable. Since Z ∝ d−3, the height D for comparable thermal contributions would be ∼ 103d

or D =∼ 1 mm.
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Supplementary Note 2. Particle flow during and after pulse.

During the pulse applied to a fork, heat is generated by the motion of the fork’s tines as they interact

with the 3He. That heat results in a temperature rise, ∆T in the chamber that the fork is situated

within. For definiteness here, we assume this is the IC. For simplicity, we assume the temperature

rise to be linear in time so dT/dt is constant. The number of 3He particles in the IC (volume VIC)

is given by n = VIC · N0/Vm, where N0 is Avogadro’s number and Vm is the molar volume. Then

we can calculate the particle flow, dn in response to the fountain pressure dP

dn

dP
= −VIC

N0

V 2
m

dVm
dP

. (4)

From the London equation (Supplementary Equation 1), we can calculate the increase in particle

number, ∆n in the IC in response to a temperature increase ∆T, noting that dVm
dP

is negative.

∆n = −VIC
N0

V 2
m

dVm
dP

ρS∆T. (5)

We calculate dVm/dP from the values in Reference [2] and obtain dVm/dP= -1.8×10−12

m3 · mole−1· Pa−1 at 22 bar, and -1.2×10−11 m3 · mole−1· Pa−1 at 0 bar. At 0.5 Tc, the inflow of

particles into the IC is of order 7×1016 particles · K−1·∆T at 22 bar and 5.5×1016 particles · K−1·

∆T at 0 bar, using values of Vm, S from Supplementary Table 2. For a nominal temperature rise

of 25 µK, this would result in the transfer of ∼ 1012 particles undergoing superflow into the IC to
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equalize the chemical potential. If we consider only the free volume of 3He above the sinter, Vfree

(approximately 2.8×10−7 cm−3) then at a temperature of 0.5Tc, where ρs/ρ ∼0.7, the fraction of

superfluid in the free volume above the sinter depleted by the superflow into the IC is estimated to

be∼ 1012/(N0 ·ρs/ρ ·Vfree/Vm) is small (of order 10−9) and undetectable. Thus, the signal received

at the HEC fork in response to a pulse applied at the IC fork (or the inverse) cannot be due to direct

depletion of the superfluid.

We can estimate the rate of superflow dn/dt in response to an applied heat pulse,

dn

dt
= vc · h · w

N0

Vm

ρs
ρ

(6)

where h,w are the channel height and width. We find that if the flow is limited by the critical

velocity vc ∼ 1.5 × 10−2 [m/s] achieved across the full channel, then dn/dt ∼ 1018 particles·s−1,

so the flow would cease after a time interval of a few µs. Since pulses are applied with a duration

of 100 sec, then it must be true that the average flow velocity of the superflow is less than critical.

We can calculate the average superflow velocity during the pulse vs from Supplementary

Equations 5 and 6. We start by rewriting Supplementary Equation 5

dn

dt
=
dn

dT
· dT
dt

= −VIC
N0

V 2
m

dVm
dP

ρS
∆T

∆t
(7)

and equate it to Supplementary Equation 6 but with vs instead of vc.

7



dn

dt
= −VIC

N0

V 2
m

dVm
dP

ρS
∆T

∆t
= vs · h · w

N0

Vm

ρs
ρ
. (8)

We then solve for the average superflow velocity vs in the channel

vs = − 1

ρs/ρ

1

h · w
VIC
Vm
· dVm
dP

ρS
∆T

∆t
(9)

At 22 bar and 0.5Tc, vs ∼ 3× 10−10 m/s.

Once the high drive to the excited fork reverts to its ambient value, the fountain pressure

in the heated chamber will be at its maximum. This pressure differential across the length of the

channel will initiate normal fluid counterflow into the non-heated chamber. In Supplementary Ta-

ble 1, we list the normal volume flow at 22 bar as 3.8×10−15 m3/s, corresponding to a normal flow

velocity of 1.15×10−6 m/s. This is much larger (by a factor of 1000) than the superflow calculated

in Supplementary Equation 9. Since this normal flow must be accompanied by a corresponding

counterflow of superfluid, we use the fact that the net particle flux must be zero (aside from the

relaxation of the fountain pressure by thermal diffusion) to equate currents. Thus js = ρs · vs = -

ρn · vn and we find vs = 0.5×10−7 m/s. Near Tc, since ρs decreases, the superfluid velocity must

increase strongly.

Both far away and close to Tc, we find that vs as calculated in the channel is dominated

by the hydrodynamic counterflow and not the flow to build up the fountain pressure. This brings
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forward two important conclusions. First the flow is maximum in the flow channel because this

is where temperature differences are largest and the cross-sectional areas are the smallest. Thus,

the average flow velocity will be maximised in this region, and consequently it is likely that the

anomalous behavior will originate from phenomena in this region. The average flow velocity

likely understates the velocities achieved in this geometry. In the vicinity of a sharp corner, the

flow velocity will be enhanced. Establishing that it could approach critical values would require

numerical calculations and detailed knowledge of the geometry beyond the scope of this paper.

A puzzling observation is that there do not appear to be significant differences in the nor-

mal or superfluid velocities when comparing 0 bar and 22 bar calculations. There is of course the

substantial difference in mean free paths at these two pressures. It is possible that the estimates

of normal flow obtained by analogy from the flow in much larger geometries is inadequate. In-

deed, a comparison between experiments and theoretical results in Ref[3] show that the models

underestimate the reduction in effective viscosity in the long mean free path limit attained at low

temperatures and low pressure in that experiment. It is also likely that the normal flow in response

to the fountain pressure is reduced by effective surface roughness. The micro machined surfaces

of the channel used here are likely to be smoother than the epoxy surfaces in the mass flow ex-

periments, so a direct extrapolation of the effective viscosity at play in these two experiments may

be problematic. These observations highlight the need for a comprehensive model for thermal

conduction under conditions of strong confinement.
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Supplementary Note 3. Received pulse observed at the HEC Fork.

In Supplementary Figure 4, we show a sampling of the temperature excursion in the HEC fork

∆THEC∗/Tc against the corresponding temperature excursion in the IC fork ∆T IC/Tc following a

pulse to the IC fork. The seven pulses shown at each pressure were recorded sequentially at the

lowest temperatures achieved (where signal to noise is better) while warming at ∼ 25 µK hr−1

at 22 bar, 0.62 bar and 0 bar. At 22 bar when we applied pulses to the IC fork, we observe that

the thermal response on the HEC fork is proportional to the IC fork’s temperature excursion. To

within the accuracy of our measurement the response is linear for the observed ∼ 1% temperature

excursion of the HEC fork from its ambient temperature. At 0 bar and 0.62 bar, we typically

applied larger pulses to the IC fork. Upon analysis, the response in the HEC fork is seen to be non-

linear. The linearity is restored when the temperature response in the HEC fork is below ∼ 1% of

the ambient temperature. As the temperature increases from the lowest temperature measured, the

Q of the forks decreases strongly near Tc. The lowered Q is accompanied by a diminution of the

signal-to noise, especially in the HEC fork. It appears that the current induced in the flow channel

has some critical value above which the response ceases to be linear or that the transmission of

surface bound excitations in the bulk is subject to some limitation. However, quantification of the

temperature dependence of the limit of the linear behavior would require better signal to noise than

is available in this experiment.
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Supplementary Figure 1: Calculated Hydrodynamic Thermal Conductivity. The calculated hy-

drodynamic thermal conductivity at 0 bar (blue traces) and at 22 bar (black traces) due to normal

liquid heat flow as described by Supplementary Equation 3. Dashed lines show behaviour calcu-

lated using the simplified form for the effective viscosity ηEFF and solid lines correspond to the

behaviour for the viscosity as shown in Supplementary Reference [3].
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Supplementary Figure 2: Heat pulses to IC and responses in both forks. Data on warming

showing the response (THEC∗) in the HEC (darker colours) to pulses applied in the IC (T IC - lighter

colours) at three pressures (0.62 bar - green, 0 bar - blue, 22 bar - red). At 0 bar the response

(dark blue) to pules applied to the IC fork (cyan) is seen at all temperatures, but is strongest at

low temperatures (relative to pulse size). The response at 0.62 bar (dark green) displays a weak

minimum around 0.9 Tc (aligned with the location of the minimum in mean free path (see inset).

The response is strongly attenuated at 22 bar above 0.6 Tc once the mean free path drops below 6

µm. THEC∗ is defined by calibrations of the Q against the TMCT. Offsets are applied to the data for

clarity.
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Supplementary Figure 3: Pulses applied to HEC and responses in both forks. Pulses applied

to the HEC fork (blue) along with the simultaneous response observed in the IC fork (purple) at 0

bar. The figure illustrates that the anomalous heat current is bi-directional. The vertical lines show

T /Tc at that time point.
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Supplementary Figure 4: Low temperature limited linear response of HEC following pulses to

IC. The inferred local temperature excursion ∆THEC∗/Tc vs ∆T IC/Tc following pulses to the IC

fork at (a) 0 bar, (b) 0.62 bar and (c) 22 bar. The response is seen to be linear for small ∆THEC∗/Tc.

The linear region is limited to ≈ 1% of Tc excursion. The pulses shown are the first few applied

following cooling to the lowest temperature at each pressure. This first heat pulse (squares) was

followed by a second (circles) through the seventh pulse (stars).
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(a) (b)

Supplementary Figure 5: Details of Experimental Cell. a) image of the assembled cell structure.

b) image of the coin-silver cavity holder prior to gluing in the cavity. Each small division is 1 mm

on scale.
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Supplementary Figure 6: Measured and calculated relaxation times and thermal resistances.

The measured thermal relaxation times (a) and (b) and calculated thermal resistances (c) and (d)

at 0 bar (blue circles) and 22 bar (red triangles) in the normal state (compare to main text Figure

3). The calculated bulk behavior: black dotted lines for the bulk fluid thermal resistance in the

channel in parallel with Kapitza resistance for sheet4 and grey dotted lines for the bulk fluid thermal

resistance in the channel in parallel with thermal boundary resistance for sinter5. Solid lines show

the behavior expected for an isotropic distribution of point scatterers in the channel that give rise

to a limiting mean free path of 1.1 µm, in parallel with the Kapitza resistance for sheet4 (black)

and sinter 5 (grey). Tc is marked by vertical dashed lines in blue (0 bar) and red (22 bar)). The bulk

calculations reference measured specific heat2, thermal conductivity6.
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Supplementary Figure 7: Effective thermal conductivity compared to bulk and impurity-

limited conductivities. The thermal conductivity κEFF(T ) at 0 bar (blue circles) and 22 bar (red

triangles) below 10 mK in the normal state calculated from geometrical parameters and Rth(T ).

Also shown are the calculated bulk behaviors (dotted lines) exhibiting the T−1 dependence of

inelastic scattering of Bogoliubov quasiparticles. The solid lines show the thermal conductivity

expected for a distribution of point scatterers that give rise to a mean free path of 1.1 µm. The

horizontal lines define the values for κEFF(T ) at 0 bar (blue 0.047±0.005 WK−1m−1), and 22 bar

(red 0.024±0.003 WK−1m−1) as Tc is approached in the normal state. Black lines (parallel Kapitza

resistance of a sheet4) and grey lines (parallel Kapitza resistance of a sinter5) show that the choice

of Kapitza resistance model does not significantly affect the value of κEFF(T ).
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