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Mechanical dissipation poses a ubiquitous challenge to the performance of nanomechanical devices.

Here we analyze the support-induced dissipation of high-stress nanomechanical resonators. We develop a

model for this loss mechanism and test it on Si3N4 membranes with circular and square geometries.

The measured Q values of different harmonics present a nonmonotonic behavior which is successfully

explained. For azimuthal harmonics of the circular geometry we predict that destructive interference of

the radiated waves leads to an exponential suppression of the clamping loss in the harmonic index. Our

model can also be applied to graphene drums under high tension.
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Nanomechanical resonators offer great potential for prac-
tical device applications that exploit their ultralow mass and
high frequencies [1]. Examples range from scaling scanning-
probe force microscopy and mass sensing down to the mo-
lecular scale to providing alternatives for radio frequency
devices. In turn, measurements ofmechanical displacements
with an imprecision below the standard quantum limit and
the preparation of ultracoldmotional states have alreadybeen
implemented with electromechanical [2–4] and optome-
chanical systems [5,6]. These breakthroughs foreshadow
the possibility of realizing a ‘‘quantum optics’’ analogue
involving a macroscopic mechanical degree of freedom
which would set a new stage for fundamental tests and
potential quantum devices [4,7,8]. All of these endeavors
share the desirability of minimizing the mechanical dissipa-
tion which can be quantified, for example, in terms of the
damping coefficient � ¼ mR!R=Q—where mR is the reso-
nator’s effectivemass,!R its resonant angular frequency and
Q its quality factor (Q value). In fact, though the figures of
merit for these various applications are quite diverse, in all
instances performance is enhanced if Q is increased while
mR and!R are kept approximately constant [1,8,9]. Finally,
with the advent of the use of stressed silicon nitride mem-
branes, nanomechanical devices with remarkably low dis-
sipation (�� 10�14 kg s�1 andQ� 106) have already been
demonstrated [9–15].

In this Letter, we present and test a model that captures
the energy loss that occurs due to elastic-wave radiation
[16–20] at the periphery of these high-stress resonators.
We show that this mechanism is significant in state of
the art structures and is strongly influenced by interference
effects. We compare the results of our model to measure-
ments of the resonant modes of two configurations, a
single ‘‘drum resonator’’ and a composite array of drum
resonators that effectively realizes a square membrane
[cf. Figs. 1(a) and 1(b)]. We examine the harmonics of
these structures and accurately account for much of the
variation in the corresponding Q values. Our analysis

reveals that certain types of modes are inherently resilient
to clamping loss as a result of destructive interference of
the radiated waves. Thus, we provide insight into resona-
tors that might be realized and yield better Q values in the
future. On general grounds, the fact that the relevant stress
at the resonator-support contact scales at least linearly with
frequency combined with the 3D nature of the support,
leads to the naive expectation that the dissipation (1=Q)
due to elastic-wave radiation should increase as one con-
siders higher harmonics [cf. Eq. (1)]. In dramatic contrast,
we find that for the harmonics of a circular membrane the
clamping loss is exponentially suppressed as the number of
radial nodal lines increases.
To derive an adequate model for the clamping losses,

we adopt the phonon tunneling approach introduced in
Ref. [17] and start from the general weak coupling expres-
sion for the dissipation 1=Q in terms of the ‘‘overlaps’’
between the resonator mode and the free modes of the
substrate (‘‘support’’):
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Here �0
R and �u0R are the stress and displacement fields

associated with the normalized resonator mode, �ð0Þ
q and

�uð0Þq are the analogous fields for the continuum of support-
free modes labeled by q [eigenfrequencies !ðqÞ], and �s

and �R are, respectively, the densities of the substrate
and resonator materials. In our setting the resonator
mode should satisfy clamped boundary conditions at the
resonator-support contact area S while the unperturbed
support modes should satisfy free boundary conditions
implying that only the second term in Eq. (1) contributes.
The substrate is modeled as a half-space that contacts the
membrane resonator at its rim S—i.e., the underetched
gap between the suspended structure and the substrate is
neglected when determining the support-free modes (for
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our structures this gap was & 200 nm � D). We assume
the ‘‘high stress’’ regime t2=D2 � �=ER � 1, where � is
the tensile stress in the membrane, t its thickness, D its
large dimension (diameter or side) and ER the Young
modulus of the resonator material. This implies that bend-
ing effects are negligible and one can use the classical
wave equation adequate for a taut membrane [21]. Thus
for the drum’s eigenfrequencies we obtain [cf. Figs. 1(a)
and 1(b)]: !nm ¼ 2�nmcR=D with n ¼ 0; 1; . . . and
m ¼ 1; 2; . . . ; while the square’s eigenfrequencies are

given by: !nm ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2

p
cR=D with n, m> 0. Here

cR ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
�=�R

p
is the phase velocity in the membrane, and

�nm is the mth zero of the Bessel function JnðxÞ. In this
context, the weak coupling approximation underpinning
Eq. (1) reads !nmt=cR � 1 and the stress �0

R corresponds
to the variation with respect to equilibrium.

For the single drum we adopt support eigenmodes

�uð0Þq;�;l;�ð�rÞ (with l ¼ 0, �1; . . . ) that have axial symmetry

with respect to z [cf. Fig. 1(a)]. These are related to

the plane wave eigenmodes �uð0Þ�q;�ð �rÞ by: �uð0Þq;�;l;�ð�rÞ ¼
½ð�iÞn= ffiffiffiffiffiffiffi

2�
p �R�

�� d’ein’ �uð0Þ�q;�ð �rÞ; where � ¼ l, t, s labels

the different types of relevant modes [i.e., longitudinal (l),
transverse in-plane (t), and surface waves (s) given that
transverse out-of-plane waves do not contribute] with

velocities of propagation c�, and we use spherical coordi-

nates for the incident wave vector �qðq; �; ’Þ ¼ qðsin�
cos’; sin� sin’; cos�Þ [� ¼ �=2 for � ¼ s and � � �=2
otherwise]. Thus, substitution of the support and resonator
modes (!R ! !nm) into Eq. (1) (cf. [22]) leads to

1

Qnm

¼ 4�2�nm�Rt

�sD

X
�

�3
�~un;�ð���nm; 	sÞ: (2)

Here we introduce the dimensionless functions

~ul;��sð~q; 	sÞ ¼ 2�
R�=2
0 d� sin�juð0Þ�q;�;zð0; 	sÞj2J2l ð~q sin�Þ,

~ul;sð~q; 	sÞ ¼ 2�juð0Þ�q;s;zð0; 	sÞj2J2l ð~qÞ and define �� 	
cR=c� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��s=Es�R

p
—where the prefactors of order

unity, which depend on �, are functions of the Poisson

ratio for the substrate 	s. We note that juð0Þ�q;�;zð0; 	sÞj2 solely
depends on �, cos� and 	s (cf. [22]).
In turn, for the square membrane an analogous proce-

dure detailed in [22], leads to:
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with ~wn;m
l;s ð~q; 	sÞ ¼ juð0Þ�q;s;zð0; 	sÞj2 ~fnmlð~qÞ, ~wn;m

l;��sð~q; 	sÞ ¼R�=2
0 d� sin�juð0Þ�q;�;zð0; 	sÞj2 ~fnmlð~q sin�Þ, where l 
 0 and

we introduce ~fnmlðxÞ ¼ flð�xÞ½ZnmlðxÞ þ ZmnlðxÞ� with
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FIG. 1 (color online). (a) Micrograph of a single drum resonator (similar to the one used in our analysis) superposed with schematic
diagrams of the different harmonics (n, m) depicting their nodal lines (the origin is set at the center of the membrane). (b) Idem for a
square membrane resonator. (c) Dissipation 1=Q as a function of frequency for the different harmonics of a Si3N4 drum resonator
(D ¼ 14:5 
m, t ¼ 110 nm, and � ¼ 0:90 GPa). (d) Idem for a square membrane resonator (253:2 
m� 253:2 
m� 0:0125 
m
with � ¼ 0:87 GPa). Red (medium gray) plot: Measured values with an error of 10% for 1=Q—we ascribe the splitting of
degeneracies observed for the square membrane [cf. (d)] to disorder. Blue (dark gray) plot: Least squares fit of our model to the
measured 1=Q using as fit parameters an internal dissipation offset (1=Qint) and material properties of the substrate (Es ¼ 148 GPa,
�s ¼ 3:75 g cm�3, and 1=Qint ¼ 8:5� 10�7 for the square membrane, and Es ¼ 323 GPa, 1=Qint ¼ 4:6� 10�5 for the drum). Green
(light gray) plot: 1=Q without the offset corresponding to the predicted clamping loss—the resulting limits for theQ values of the drum
and square membrane are shown, respectively, in (e) and (f). High-Q harmonics ðn; 1Þjn>0 [ðn; nÞjn>1] of the drum [square] are marked
by circles; low-Q harmonics ðn; 1Þjn>0 of the square, by triangles. For the drum [square] all harmonics with frequencies below
130 MHz [9 MHz] are included except (0, 3), (3, 2) [(7, 1)].
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ZnmlðxÞ 	 zln<ðxÞ
n3ðn2 � x2Þ3=2

8<
:2nðlþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � x2

p
þ zn<ðxÞ

þ 16n2ðn2 � x2Þzn<ðxÞ
½zn<ðxÞ þ zm>ðxÞ�½zn<ðxÞ þ zm<ðxÞ�

9=
;:

Here zn+ðxÞ 	 2n2 � x2 � 2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � x2

p
and the functions

flðxÞ are given by flðxÞ 	 ½�0l � 2ð�1ÞnJ4lðxÞ þ
ð�1ÞlJ4lð

ffiffiffi
2

p
xÞ�=ð2�0lx4lÞ for nþm even, and flðxÞ ¼

½�0l � 2sin2ðl�=2ÞJ2lðxÞ � cosðl�=2ÞJ2lð
ffiffiffi
2

p
xÞ�=ð2�0l x2lÞ

for nþm odd. Equation (3) is only valid for the case

minfn;mg>�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2

p
which is satisfied for the reso-

nances studied here—note that material properties always
imply �l < �t < �s, and � � Es implies �s � 1.

We proceed to compare the predictions of our model
[Eqs. (2) and (3)] with the dissipation measured in nano-
mechanical membrane resonators (cf. Fig. 1). These reso-
nators are made of ‘‘stoichiometric’’ Si3N4 deposited by
low pressure chemical vapor deposition on SiO2 [14]. The
nitride has an inherent stress of 1.2 GPa, as measured by a
wafer bow technique [10], and a density �R ¼ 2:7 g cm�3.
After lithographic patterning to define access holes, the
resonators are suspended by etching the underlying oxide
through these holes, using a buffered oxide etch for the
single drum and HF for the square membrane, and critical
point dried. Thus a single access hole results in a circular
drum geometry, while a square geometry is defined by a
periodic square lattice of such holes (50� 50 separated by
5 
m). Given the small size of the holes (& 1 
m) com-
pared with the typical mode wavelength, we neglect them
in our model. For the square array, the same consideration
applies to the hole separation so that we use a square
membrane model with uniform thickness t ¼ 12:5 nm

given by the average over the array [23] and side D ¼ffiffiffiffi
A

p ¼ 253:2 
m, where A is the suspended area. For the
single drum (diameterD ¼ 14:5 
m) the use of a buffered
oxide etch implies that the thickness is uniform and equal
to the nitride thickness (110 nm).

The mechanical resonances of the structures are charac-
terized under vacuum and room temperature conditions,
using a technique described in Ref. [14]. The resonators are
actuated using a piezo disc that vibrates the chip in the out-
of-plane direction and the motion is detected via a 633 nm
cw laser. Figures 1(c)–1(f) compare the measured frequen-
cies and Q values of different harmonics for the two
configurations, single drum and square array, with the
predictions of our model. This comparison takes into ac-
count three issues: (i) the release of the resonator leads to a
local deformation of the wafer that lowers the membrane’s
tensile stress with respect to the one in the nitride layer,
(ii) in addition to clamping losses the resonator will be
affected by internal dissipation [11,14,15,24,25], and
(iii) the parameters for the half-space model of the sub-
strate must be judiciously chosen.

To deal with (i) we determine the membrane phase
velocity cR from a suitable linear regression that uses as

input the resonator size D, the measured frequencies,
and their mode indices which can be identified from the
frequency ratios between the harmonics and the fundamen-
tal mode. We find an excellent correlation that yields
cR ¼ 576:8 ms�1 (566:8 ms�1) for the drum (square).
Our model is in excellent agreement with the observed

trends providing internal dissipation (ii) is incorporated
by adding to the calculated clamping loss an overall offset
1=Qint which is left as a fit parameter. One should note that:
(a) internal dissipation has been identified as a relevant
mechanism in previous experiments on high-stress Si3N4

resonators, with indications of surface effects playing
a substantial role [11,15], and (b) our analysis does not
necessarily rule out a minor frequency variation for this
additional mechanism which would be masked by the
nonmonotonic behavior of the clamping loss (see below).
To elucidate (iii) one needs to compare the wavelengths
of the resonant support modes with the thickness of the
Si wafer (0.5 mm). For the square, the resonant frequencies
are in the MHz range resulting in wavelengths in Si
(4–8 mm) much larger than the wafer’s thickness so that
these modes are dominated by the properties of the
underlying piezo and positioning system. Thus, we adopt
	s ¼ 1=3 and leave the density �s and Young modulus Es

as fit parameters. On the other hand, for the drum the
resonances studied lie in the 100 MHz range so that the
elastic-wave radiation is determined mostly by the aniso-
tropic properties of crystalline Si. For this case we adopt
�s ¼ 2:33 g cm�3 and 	s ¼ 0:28, but leave Es as a fit
parameter given the isotropic nature of our model.
In both cases, drum and square geometry, we find a class

of modes that consistently exhibit lower dissipation 1=Q
when compared to nearby modes [cf. Figs. 1(c) and 1(d)].
Their measured Q remains approximately constant as the
harmonic index is increased, leading to a growth in their
fQ product that for the square reaches a maximum of
1:0� 1013 Hz for the (6, 6) harmonic. These ‘‘special’’
classes of harmonics for the drum and square are, respec-
tively, ðn; 1Þjn>0 and ðn; nÞjn>1 and correspond to the
presence of nodal lines that intersect the periphery at
evenly spaced points [cf. Figs. 1(a) and 1(b)]. In contrast,
for the square geometry the modes (n, 1), (1, n), where two
of the sides do not intersect any nodal lines, tend to exhibit
smallerQ for comparable frequencies with fQ� 1012 Hz.
An intuitive heuristic understanding of these trends
emerges from realizing that for low harmonics, with mem-
brane wave vectors ��=D, the typical resonant wave-
lengths in the substrate are much larger than D. Thus,
for the special modes the clamping loss is suppressed
[cf. Figs. 1(e) and 1(f)] due to destructive interference
between the waves radiated by the different equivalent
segments of the periphery, defined by the nodal lines,
which have alternating � phases. Concomitantly, unlike
the fundamental mode, these special modes are associated
to stress sources with vanishing total force.
A quantitative grasp of these striking features can be

gained by exploiting the smallness of the �� underpinning
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the aforementioned wavelength separation. For the drum,

relevant harmonics satisfy the condition ���nm � ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
which allows us to Taylor expand the Bessel functions in
the ~ul;� yielding an approximation for Eq. (2) that implies

the following [26]:

Q01� �sc
3
t

�Rc
2
R!01 ~v0ð	sÞ

��������	s¼1=3
¼0:029

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R

�s

�
Es

�

�
3

s
D

t
;

Qn1

Q01

�nð2nþ1Þ=16
�
0:517

cs
cR

�
2n
;

Qnm

Qn1

�
�
�n1
�nm

�
2nþ1

(4)

where �R ¼ �Rt is the surface mass density of the mem-
brane and ~v0ð	sÞ 	 2�2

P
�ðct=c�Þ3~u0;�ð0; 	sÞ. Thus, the

clamping-loss limited Q values of modes (n, 1) effectively
grow exponentially—as the superexponential factor plays
a negligible role for relevant n, in sharp contrast to series of
modes for which m is increased while n is kept constant.
These exhibit a decrease of Qclamp for increasing fre-

quency. On the other hand, for the square geometry analo-
gous considerations imply for m� n 
 �01=2��� a rise

in Qclamp that is merely linear, with the damping

rate tending to a constant value, as the harmonic indices
are increased with their ratio m=n fixed. In turn, for our
setting given the magnitude of 1=Qint all the high-Qmodes
present roughly constant Q values.

A comparison between the predictions [cf. Eqs. (2) and
(3)] for the two geometries (with appropriate dimensions)
also reveals that for special harmonics [ðn; 1Þjn>0 and
ðn; nÞjn>1] with the same frequency and number of nodal
lines the circular geometry always yields a higher Q. In
turn, one should note that the scalings, embodied in Eq. (4),
for the Q values in terms of �R=�s, Es=�, and D=t are
completely general and independent of the shape of the
boundary. These directly imply that the fQclamp product

of a given harmonic is independent of D. Furthermore,
typical parameters yield for the fundamental mode
fQclamp � 1012 Hz, which is comparable to experimental

values (cf. Figs. 1(c) and 1(d), and Refs. [9,13]). Finally,
we have performed similar calculations for doubly-
clamped beams under high-stress (nanostrings) which
will be presented elsewhere. We find that though destruc-
tive interference leads to an enhancement of the Q for
antisymmetric modes with low n as compared to symmet-
ric modes, within each parity Q decreases with harmonic
index so that there are no modes resilient to elastic-wave
radiation as for the 2D geometries.

In conclusion, we find that the dissipation of different
harmonics of a given membrane resonator exhibits a
striking nonmonotonic behavior which can be understood
in terms of how the mode shapes of different harmonics
influence the clamping loss. We find classes of modes for
which the measured Q remains approximately constant
and substantially larger than for other modes with compa-
rable frequency, and explain this phenomenon in terms of
destructive interference between the radiated waves lead-
ing to a strong suppression of the clamping loss. Notably,

our analysis implies that for modes (n, 1) of a circular
geometry, the damping rate due to elastic-wave radiation
vanishes exponentially in n rendering them ‘‘asymptoti-
cally mute.’’ Thus, for typical parameters, these azimuthal
harmonics can be regarded as effectively clamping-loss
free for moderate n (e.g., fQclamp * 1017 Hz for n 
 5

and thickness t< 10 nm). Our results are relevant to state-
of-the-art dispersive optomechanical setups [9,13] and the
model is also applicable to graphene nanodrums under
tension [27]. Finally, we highlight that the interference
effects we have unveiled will also be operational for the
flexural modes of rigid plates.
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