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ABSTRACT 
 

We have fabricated several varieties of micro and nanomechanical resonators and 
have studied their phase response when driven at their natural frequency with and without 
parametric pumping.  

We found that micron-sized paddle oscillators with submicron-sized supports had 
resonant frequencies in the 3-10 MHz range for their translational mode. Due to the 
stretching of the support beams, the effective stiffness of the system increases with 
amplitude and distorts the response curve. The phase response vs. frequency has a sharper 
slope with increasing drive amplitudes, and develops a discontinuity at very large 
amplitudes. 

We explored another system, which consisted of silicon disks supported by an 
oxide pillar at the disk center, with a resonant frequency near 1 MHz. A low power laser 
beam, (about 100 μW), focused at the periphery of the disk, results in a change of the 
effective spring constant due to heating, which allows us to realize degenerate parametric 
amplification of the disk’s vibrations through a double frequency modulation of the laser 
power. We measured the phase response while varying the drive amplitude, the pump 
amplitude, and the phase angle between the drive and the pump. We also simulated the 
system with numerical modeling. We have studied the phase response vs. frequency for 
various pump conditions. For the condition of maximum amplification, the phase 
response displays a shallower slope with increasing pump frequency. Thus, importantly, 
we find that while the width of the resonance peak narrows with more amplification, the 
frequency stability degrades. 
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Introduction 
The micromechanical oscillator is a core device in many applications of 

microelectromechanical systems (MEMS), such as accelerometers, force microscopes, 
magnetometers, mass detectors, and sensors for pressure and temperature. It has also 
been demonstrated that these tiny oscillators can be used as key components (such as 
frequency references and filters) for RF circuitry [1]. An optical detection technique, 
widely employed in force microscopy, was also used to achieve a force resolution of 
5.6x10-18 N [2] and mass sensitivity of 10-12 g [3]  In many laboratories there is an 
ongoing effort to develop new oscillator designs and understand their behavior. These 
devices display non-linear behavior to a varying degree and it is possible that the non-
linear properties of mechanical oscillators can be employed in applications. We have 
recently reported on the studies of large amplitude response of paddle oscillators4 and 
parametric amplification in torsional5 and disk6 resonators. Phase response can provide 
new insights into such complicated phenomena. 

Large-amplitude nonlinearities 
Let us consider a case of a driven damped linear oscillator. It is described by 
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where δ  is the amplitude of oscillation, β = ω0/2Q  is the loss coefficient,  ω and 

Mk=0ω  are the driving and resonant frequency, Q is the mechanical quality factor, 
F(t) is the external driving force, M is the mass and k is the spring constant of the 
oscillator.  

If non-linear effects are present, they are typically described via an addition of an 
extra term to Eq. (1): 
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where K3  is the non-linear coefficient. The addition of this term results in an effectively 
stiffer (for positive K3) restoring spring constant at large amplitudes. 

A convenient way to visualize phase-dependent phenomena is to draw Nyquist 
plot, which is a parametric plot of Im vs. Re parts of the response amplitude. For the case 
of a linear oscillator described by Equation (1), Im(δ) vs Re(δ) will be a circle, if a 
periodic driving force is swept through the resonance. This circle is distorted if non-linear 
effects are present. 

We studied a paddle oscillator 2 μm × 2 μm in size, 200 nm thick supported by 
two 2 μm long beams. The single-crystal silicon oscillators were fabricated from silicon-
on-insulator (SOI) wafers with a 200 nm thick silicon layer on top of a 405 nm SiO2 layer 
by electron beam lithography and reactive ion etching (RIE) to define the top layer. 
Dipping the resulting structure into hydrofluoric acid undercuts the silicon oxide and 
releases the structures. The structure was mounted on a piezo transducer and placed in 
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high vacuum (~10-7 Torr). All measurements were done at room temperature. We used 
the fundamental translational mode of the paddle oscillator for our measurements. We 
have previously found that this particular structure has a very large non-linear response at 
large amplitudes.7 An ac voltage applied to a piezo transducer was used to excite the 
MEMS oscillators. The vibration was detected by focusing a HeNe laser beam on the 
surface of the paddle. The motion modulated the reflected light intensity and was 
detected by a high-speed photodetector. Its signal was fed to a high-frequency lock-in 
amplifier, while the AC driving signal served as a reference. The voltage from Re and Im 
outputs of the lock-in was read by a National Instruments capture board. The driving 
frequency ω was slowly swept across the resonance, and the response was recorded.  

Figure 1a shows Re and Im parts of the response when the resonator is driven with 
20 mV of piezo voltage, which is well below the non-linear regime. Figure 1b shows the 
Im vs. Re plots for gradually increasing driving force. The low-amplitude plots are 
circular, as predicted theoretically. The larger-amplitude responses are progressively 
more distorted due to the effects of the cubic non-linearity (see Eq. 3). 

This nonlinear behavior is well known, and can be advantageous in resonant 
sensor measurements.  Near the critical amplitude, that is at a drive just below the one 
that induces a discontinuity, the phase of the oscillator φresponse, where φresponse =tan-

1(Y/X), relative to the phase of the driving force, also has a very large slope as a function 
of frequency (see Figure 1c).  This actually serves to make the oscillator less susceptible 
to phase noise caused by the amplifier electronics used to drive the structure. As a result, 
the frequency stability of the frequency source, built based on this resonant element, can 
be substantially improved. This effect was explored earlier[8] for much larger structures. 

Phase measurements in parametrically amplified disk resonators 
Especially interesting results are expected from oscillators that are driven so that 

they display parametric amplification. We have recently reported study on high Q disk 
oscillators [6]. The single-crystal silicon oscillators were fabricated as disks supported by 
a pillar at the center point. The structures were fabricated, driven and detected in a 
manner similar to the paddles. The disks were made out of silicon-on-insulator (SOI) 
wafers with a 250 nm Si top layer and a 1 μm SiO2 underlayer using e-beam lithography 
followed by a dry etch through the top silicon layer. Dipping the resulting structure into 
hydrofluoric acid undercuts the silicon oxide starting from the disk’s periphery toward 
the center. By timing this wet etch, the diameter of the remaining supporting silicon oxide 
can be varied. In this paper, we present data obtained with disks of radius 20 μm, 
supported by 6.7 μm diameter SiO2 pillars (see Figure 2). An electro-optical modulator 
was inserted in the beam path. It was controlled by the voltage produced by an external 
generator, phase-locked to the driving signal. Degenerate parametric amplification was 
enabled by modulating the laser beam incident on the resonator at twice the drive 
frequency. Periodic laser-induced heating and cooling modulated the effective stiffness of 
the resonator, providing the condition for the parametric amplification [6]. The phases 
and amplitudes of pump and drive can be independently adjusted. The resulting equation 
of motion has an additional term as compared to Eq. 1: 
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The solutions to this equation are well studied [9, 10]. After the transitional effects have 
died down after many cycles, the steady-state solution is the oscillation at the driving 
frequency, with some particular amplitude and phase. When ϕdrive = 90 degrees, the 
resonant structure acts as an amplifier of the driving signal. The amplitude grows with 
increasing pump, and diverges when Δk = 2k0/Q, when the amount of energy supplied by 
the pumping is enough to compensate for the losses during oscillation. Further increase in 
the pumping amplitude results in self-oscillation without any drive signal. 

Figure 3a shows a series of scans near the condition for maximum peak 
amplification. Because of the phase-dependent nature of the degenerate parametric 
amplifier, the circle is elongated (amplified) along one direction (or phase), and squeezed 
along the orthogonal one. If the drive phase ϕdrive is shifted by 90 degrees, we step into 
the de-amplification regime as shown in Figure 3b.  

Figure 3c shows the phase diagram for some intermediate phase where the real 
and imaginary responses are nearly proportional to one another. Figure 4 shows the scans 
where the pump amplitude Δk  is kept constant, and only the phase of the drive ϕdrive is 
varied. 

We have modeled the behavior of the system by numerically solving Eq. 4, 
without any approximations or simplifications. The solutions for displacement δ are 
calculated until reaching a steady state. The amplitude and phase of the mechanical 
oscillations are then determined by multiplying the time-varying solution with the drive 
reference, and averaging, in effect simulating what a lock-in amplifier does. Figure 5 
shows plots of oscillator amplitude and phase vs. frequency near resonance for a fixed 
pumping amplitude, and varying the drive phase. Note that for the conditions of 
maximum amplification (ϕdrive = 90 deg) the center portion around the peak is amplified, 
and the sides are de-amplified, making the effective width of the peak narrower. 
However, the response is no longer Lorentzian, and narrower peak does not automatically 
translate into better frequency stability. The pumped system exhibits a shallower phase 
slope, which implies that the oscillator exhibits a greater susceptibility to the phase noise 
from driving electronics, and a lower frequency stability of the system as a result. Thus, a 
somewhat counter-intuitive conclusion is that while the width of the resonance peak 
narrows with more pumping, the frequency stability is degraded.  

A plot in Figure 6 shows the phase slope behavior in more detail. Near 90-degree 
drive phase, when the parametric amplification is at maximum, the response phase slope 
is the shallowest; near 0 degrees, when the amplification is minimum (≈ ½) the phase 
slope is the sharpest.  

We have recently demonstrated a frequency generator by building a positive 
feedback loop with a mechanical resonator as frequency-determining element [11]. We 
have shown frequency stability of better than 1 ppm rms (with 100 ms integration time). 
The frequency stability of such system can be further improved by using the resonant 
structure as a degenerate parametric amplifier, and operating at the condition for 
maximum deamplification. As seen from Figure 6, the phase slope is becoming 
significantly sharper, as compared to the case without pumping. Figure 7 shows the 
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behavior of the phase slope as a function of pump amplitude, normalized to the no-pump 
case. Clearly one can improve the frequency stability by at least an order of magnitude, 
depending how close the critical pump point is approached. 

We have recently reported on a different type of parametric amplification, termed 
non-degenerate parametric amplification.12 By using two coupled resonators, a three-
frequency negative impedance amplifier was constructed. Unlike the response of the 
structure described above, the non-degenerate parametric amplifier does not have any 
signal phase dependence [10]. In contrast to a degenerate parametric amplifier, the peak 
shape remains Lorentzian even when being amplified, which implies that its phase 
dependence on the frequency has a sharper slope with increasing pump. Therefore a 
frequency generator built on this type of an amplifier will also benefit from the described 
phase-sharpening effect.  

 
Conclusion 

We have studied the phase response of mechanical paddle resonators with a third-
order non-linearity, and its effect on the frequency stability. The phase response sharpens 
as the amplitude of motion increases, which results in increased phase slope and 
improved phase stability. We have also measured disk resonators acting as degenerate 
parametric amplifiers. For the condition of maximum amplification, the frequency 
response has a sharper peak, but the frequency stability is degraded because of shallower 
phase-frequency slope. If one is to use such structure as a resonant element in a frequency 
generator, its frequency stability will be greatly improved by operating at the condition of 
maximum deamplification. 
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Figure captions. 
 

Figure 1. (A) We show the real (solid line) and imaginary (dotted line) components of 
the response plotted against the drive frequency, at a constant drive excitation of 20 mV 
for a paddle oscillator. (B) A plot of the Im vs Re components for a paddle oscillator as 
the drive voltage is increased from 20 to 50, 75, 100, 125, 150, 175, 200 mV. (C) Phase 
change as a function of frequency near resonance for large-amplitude non-linearity for a 
paddle oscillator 

 

Figure 2. (a) SEM, (b) schematic, (c) mode of oscillation of the disk structure used to 
study parametric amplification. The disk is 40 μm in diameter and 0.5 μm thick. 

 
Figure 3. Phase plots of the resonator mechanical response for drive phase of (A) 90 
degrees, (B) 0 degrees, (C) 40 degrees. The response has a circular shape in the linear 
regime, and shows progressive distortion with increasing pump amplitude. 1 a. u. of 
mechanical motion corresponds to approximately 45 nm. 
 

Figure 4. Phase plots of the resonator mechanical response for fixed pump and varied 
drive phase. 

 

Figure 5. Amplitude and phase response of a disk resonator under parametric 
amplification when scanning through resonance, from simulations. The amplitude of the 
parametric amplification remains constant, and phase of the pump is (A) 0 deg, maximum 
deamplification, (B) 30 deg, intermediate, (C) 90 deg, maximum amplification. 

 
Figure 6. The slope of the phase response ϕresponse near resonance, for pump amplitude 
0.95 of critical (Δkcritical = 2k0/Q), and varying pump phase ϕpump (see Eq. 4). 
 
 
Figure 7. Plot of the slope the phase response ϕresponse near resonance (normalized to the 
no-pump case), for constant drive phase ϕdrive = 0 deg (see Eq. 4), and varying the pump 
amplitude (normalized to the critical pump (Δkcritical = 2k0/Q). The slope, and thus 
stability with respect to external phase noise, diverges near critical pump amplitude. 
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Fig.1  Olkhovets A. 
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Fig.2  Olkhovets A. 
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Fig. 3  Olkhovets A. 
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Fig.4  Olkhovets A. 
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Fig. 5  Olkhovets A. 
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Fig. 6  Olkhovets A. 
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Fig. 7.  Olkhovets A. 
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