Acoustical Experiments on Superfluid ³He-⁴He Mixtures in Aerogel G. Lawes^a, E. Nazaretski^a, P.N. Brusov^a, N. Mulders^b, and J.M. Parpia^a ^a Dept. of Physics and LASSP, Cornell University, Ithaca, NY 14853 ^b Dept. of Physics, University of Delaware, Newark, DE 19716 This report discusses our results on the superfluidity of $^3He^{-4}He$ mixtures in a 98% porosity silica aerogel. We have used low frequency sound to probe helium mixtures confined to aerogel, and have observed both the slow mode of superfluid 3He in aerogel, which is manifested only below T_c , and an additional sound mode present only in the mixture. We attribute this novel sound mode to the slow-mode in the 4He rich phase of the dilute $^3He^{-4}He$ mixture. This mode exhibits positive frequency shifts below T_c in aerogel, while above T_c the mode is observed at a temperature independent frequency until close to T_{λ} where it shifts to zero frequency. PACS numbers: 67.57.De, 67.40.Pm, 67.60.Fp 3 He confined to silica aerogels presents a novel system for the investigation of impurity scattering on p-wave superfluidity. The aerogel acts like a collection of impurity scattering sites, and 3 He undergoes a superfluid transition (albeit with reduced T_c and ρ_s) in the presence of this disorder 1 . Furthermore, the aerogel matrix has been shown to alter the phase diagram for 3 He- 4 He mixtures, detaching the phase separation curve from the 4 He lambda line so that at T=0 all of the 3 He is close to (within a few 3 He coherence lengths) the 4 He rich phase 2 . The first experiments to investigate the superfluidity of 3 He in 4 He-coated aerogel strands used torsional oscillator techniques to investigate the superfluid transition. These measurements showed that the 3 He exhibited a phase transition at 4 He concentrations ranging up to $34\%^3$. The present experiment uses low frequency CW sound propagation to probe the behavior of ${}^{3}\text{He-}{}^{4}\text{He}$ mixtures in aerogel. In particular, we have concentrated on investigating the second-sound like modes present in the aerogel-helium system to understand the nature of the superfluidity. It has been predicted that there should be three sound modes present in (bulk) homogeneous mixtures, the first corresponding to ordinary first sound and two second sound modes, one terminating at T_{c} and the other terminating at T_{c}^{4-6} . The mode terminating at T_{c} is associated with superfluid ^{3}He dissolved in the superfluid ^{4}He . In these measurements however, we believe that the strong inhomogeneities in the system permit the existence of a second sound like slow mode terminating at T_{c} which propagates only in the ^{3}He rich phase of the mixture. The experimental cell consists of a cylindrical body, filled with a 98% porosity aerogel sample. The cylinder is capped off by a pair of thin BeCu diaphragms to which have been attached piezoceramic material to act as the microphone and speaker transducers. There is also a cylindrical capacitor, filled with the same 98% aerogel, connected to the experimental volume and which is used to monitor the ³He-⁴He concentration inside the cell. The experiment is mounted on the stage of a nuclear demagnetization refrigerator with a base temperature of under 0.5 mK. The temperature was measured using a ³He melting curve thermometer mounted on the nuclear stage. The measurements discussed in this paper focus on the low ⁴He concentration portion of the phase diagram. The ⁴He fraction in the cell is determined by comparing the empty cell capacitance with the measured capacitance together with the values for the capacitance at various pressures with pure ³He and pure ⁴He. This information gives the number density of particles in the cell, from which we can extract the ⁴He fraction by using the molar volumes of ³He and ⁴He at the working pressure. The determination of the ⁴He fraction in the cell *in situ* is absolutely crucial. The presence of a silver sinter heat exchanger provides a large surface area (comparable to the experimental cell) into which the ⁴He may be redistributed. The distribution of ⁴He in an 11% ³He-⁴He mixture in aerogel is somewhat unclear. Previous experiments using torsional oscillators² and heat capacity measurements⁷ to probe the ³He-⁴He phase diagram in aerogel suggest that for ⁴He concentrations less than about 20% there is no well-defined phase separation. It is expected that there will be a high concentration of ⁴He particles near the aerogel strands with pure ³He in the voids. There are two second sound like modes present in ${}^{3}\text{He}^{-4}\text{He}$ mixtures in aerogel. The first is due to oscillations in the superfluid ${}^{3}\text{He}$ component and vanishes at T_c . The second results from thermal oscillations (which couple to the pressure transducers on account of the aerogel matrix⁸) in the ${}^{4}\text{He}$ -rich superfluid phase of the mixture and vanishes at T_{λ} . A plot showing the Fig. 1. Spectra of the quadrature response of the mixture slow mode, offset vertically with temperature. Sample is an 11% ⁴He mixture at 17.2 bar. Note the different temperature scales for the two plots. The lower plot shows the appearance of a ³He slow mode at T_c ; this mode is accompanied by a shift in frequency in the mixture slow mode, as labelled. temperature evolution of these slow modes in an 11% ⁴He mixture at 17.2 bar is shown in Fig. 1. There is also a mode visible at 200 Hz, starting at a temperature of around 275 mK. This mode remains a high quality mode until at least 400 mK, and is likely associated with a parasitic excitation in the cell, rather than the second sound like excitation of the mixture slow mode. We also plot the center frequency of the 3 He modes as a function of temperature in Fig. 2. The center frequency of each peak was determined manually for each trace. The empty circles are data for the slow mode of 3 He in a 3% 4 He mixture. At this very low concentration, the 4 He is thought to be present only as a solid layer covering the aerogel strands. The spectrum is very similar to that which we found for pure 3 He, although with a slighly elevated value of T_c (by about 50 μ K). In particular, there is no evidence for an additional slow mode of the 4 He at this concentration. The center frequency of the ³He slow mode in an 11% ⁴He mixture is also shown in Fig. 2. The presence of 11% ⁴He in the mixture has only a small effect on the superfluidity of ³He. The transition temperature T_c is unchanged from the value at 3% ⁴He, although the superfluid density ρ_s is slightly reduced. Note that unlike pure ³He in aerogel, ρ_s will not be simply Fig. 2. Center frequencies for the ³He slow mode versus temperature at 17.2 bar. Open circles—³He slow mode in 3% mixture. Closed circles—³He slow mode in 11% mixture. proportional to c_2^2 (the speed of second sound in aerogel squared) because of "tortuoisity" effects from the ⁴He coated aerogel strands, although these are likely to be small. The ³He slow mode in the 11% mixture shows the existence of an "edge" mode, thought to be caused by oscillations in bulk ³He in the narrow gap between the aerogel and cell walls, as observed in previous acoustical measurement on ³He in aerogel⁹. The slow mode merges into the edge mode at temperatures above T_c and vanishes at the bulk superfluid ³He transition temperature (T_{c0}). The edge mode was also present in the 3% ⁴He mixture, but its amplitude was too small to be able to resolve accurately. Fig. 2 does not show the temperature evolution of the slow mode in the 11% mixture because we are unable (as yet) to unambiguously extract the center frequency from interfering resonances. This mode shows positive frequency shifts on cooling below T_c , similar to that of the ³He slow mode. At temperatures above T_c , the frequency of the slow mode in the mixture remains fixed. In particular there is no shift in frequency (or amplitude) at T_{c0} . This is important to note, because it demonstrates that this mode is a feature of the mixture confined to the aerogel rather than any sort of bulk effect. The nature of the mixture slow mode below T_c is somewhat unclear, we cannot determine if the motion is restricted to the ⁴He component, or if the superfluid ³He also participates in the motion. Fig. 3. Center frequencies of the mixture slow mode in an 11% $^4{\rm He}$ mixture at 17.2 bar versus temperature. The mixture slow mode is present at higher temperatures when there is no superfluid ³He present. There is no ambiguity about the origin of the slow mode at these elevated temperatures. The slow mode of pure ⁴He in aerogel has been observed previously ^{10,11}. In the ³He-⁴He mixture in aerogel system the ³He in the normal phase reduces the speed of the ⁴He slow mode, which remains a high quality mode at low frequencies at all temperatures. The center frequencies of the ⁴He (or mixture) slow mode as a function of temperature are plotted in Fig. 3. This mode decreases to zero frequency at a temperature of 325 mK, which is consistent with previous measurements on the ³He-⁴He phase diagram in aerogel. One further point to note about the ⁴He slow mode is that we can use the value of the frequency shift compared to the ⁴He superfluid density to investigate (at least qualitatively) the distribution of ⁴He inside the aerogel. We can use the following relation between the superfluid density in aerogel and the speed of second sound: $$\frac{\rho_s}{\rho} = \frac{\rho}{\rho_a} \left(\frac{c_s}{c_a}\right)^2,\tag{1}$$ (taken from previous work on $^3{\rm He}$ in aerogel⁹) where c_s and c_a are the speed of second sound in $^4{\rm He}$ and the speed of sound in aerogel respectively to probe the distribution of $^4{\rm He}$ in aerogel. If we substitute the total ($^3{\rm He}$ plus $^4{\rm He}$) density into Eq. 1, with the estimated speed of sound in aerogel (50 m/s) and a resonant frequency for the $^4{\rm He}$ slow mode of 220 Hz at low temperatures (corresponding to $c_s \approx 6$ m/s for direct sound propagation) the superfluid fraction is estimated to be on the order of 4%. However, at these very low temperatures we expect all of the ⁴He to be in the superfluid state, so the superfluid fraction of the mixture should be closer to 8% (excluding the ⁴He solid on the aerogel strands). This discrepancy can be attributed to the fact that the sound mode must take a rather tortuous path through the sample cell—there is no direct path through the superfluid component between the transducers. By comparing the frequency of the ⁴He slow mode with the ⁴He concentration in the mixture, we will be able to detect changes in the ⁴He morphology, and in particular observe changes as the ³He-⁴He mixture is remixed and the distribution of ⁴He on the aerogel changes. We have found that the frequency of this mixture slow mode changes while the sample is annealed, which suggests that there may be a redistribution of ⁴He on the aerogel strands occuring in the homogeneous mixture at high temperatures. In summary, we have investigated two second sound like modes in 3 He 4 He mixtures in aerogel for small 4 He concentrations. The first mode corresponds to thermal oscillations in the 3 He superfluid component and is present only below T_c . The second slow mode results from oscillations in the 4 He-rich component of the mixture and vanishes only at T_{λ} , although the frequency of this mode shifts at temperatures below T_c . We hope to develop a better understanding of this mixture slow mode by continuing our investigations into mixtures with higher 4 He contents. We acknowledge helpful conversations with E.N. Smith, M.H.W. Chan, Paul Brusov, and J. Beamish. The research was supported by the NSF under DMR-9970817 and by NASA under NAG8-1438. ## REFERENCES - 1. J.V. Porto, and J.M. Parpia, Phys. Rev. Lett. 74, 4667 (1995). - 2. S.B. Kim, J. Ma, and M.H.W. Chan, Phys. Rev. Lett. 71, 2268 (1993). - 3. A. Golov, J.V. Porto, and J.M. Parpia, Phys. Rev. Lett. 80, 4486 (1997). - 4. I.M. Khalatnikov, JETP Letters 17, 386 (1973). - G.E. Volovik, V.P. Mineev, and I.M. Khalatnikov, Sov. Phys. J.E.T.P. 42, 342 (1975). - 6. A.F. Andreev and E. P. Bashkin, Sov. Phys. J.E.T.P. **42**, 164 (1975). - 7. N. Mulders, and M.H.W. Chan, Phys. Rev. Lett. 75, 3705 (1995). - 8. P. Brusov, et al., Phys. Rev. B 63, 14507 (2001). - 9. A. Golov, D.A. Geller, and J.M. Parpia, Phys. Rev. Lett. 82, 3492 (1999). - M.J. McKenna, Tania Slawecki, and J.D. Maynard, Phys. Rev. Lett. 66, 1878 (1991). - 11. N. Mulders, et al., Phys. Rev. Lett. 67, 695 (1991).