Superfluidity of ³He in Aerogel Covered with a Thick ⁴He Film

A. Golov, J. V. Porto,* and J. M. Parpia

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853

(Received 24 November 1997)

We have examined the superfluidity of ³He in 98.2% porous silica aerogel with up to 34% ⁴He at 21.6 bars. The mixture is phase separated for ⁴He fractions between $\sim 11\%$ and 34%, and the ⁴He-rich phase preferentially occupies the regions of highest silica density in the aerogel, thus modifying the distribution of the correlated disorder seen by superfluid ³He. The ³He T_c increases slightly with ⁴He content while the superfluid fraction decreases rapidly. This behavior is inconsistent with that of ³He in a homogeneously scattering medium and is analogous to that of a granular superconductor. [S0031-9007(98)06127-4]

PACS numbers: 67.57.Pq, 64.75.+g, 67.60.Fp

Liquid ³He in highly porous aerogel provides a unique opportunity to study the influence of disorder on the triplet superfluid. In 98.2% porous aerogel, the ³He superfluid transition is sharp and the transition temperature, T_c^{aero} , is reduced compared to that of the bulk, T_c^{bulk} [1–3], so that at 21.6 bars $T_c^{\text{aero}}/T_c^{\text{bulk}} \approx 0.77$ [4]. The superfluid fraction, ρ_s/ρ , is more sensitive to disorder and is reduced to $\rho_s^{\text{aero}}/\rho(T=0) \approx 0.2$, compared to $\rho_s^{\text{bulk}}/\rho(T=0) = 1$. Simultaneous measurements of $\rho_s^{\text{aero}}/\rho$ and the NMR frequency shift have shown that the superfluid transition is coincident for both techniques, and therefore T_c^{aero} is homogeneous throughout the sample [5]. A further suppression of T_c^{aero} in a magnetic field is progressively eliminated by the substitution of surface ⁴He for the localized ³He atoms [6].

On a microscopic scale the base-catalyzed aerogel is a diffusively aggregated conglomerate of silica particles of \sim 50 Å size. The disorder, imposed by the aerogel on ³He, can be characterized by a distribution of the correlations in silica [7]. For these aerogels of 98% porosity, the disorder spans the range up to \sim 1000 Å [8].

The broad distribution of length scales in aerogel introduces correlated disorder which is responsible for the qualitatively different behavior of the transition for superfluid ⁴He [9]. However, in superfluid ³He, the description is complicated because the internal length scale, the coherence length, ξ_0 (which varies with pressure from 800 to 150 Å), is encompassed by the distribution of silica correlations. It is not obvious which properties of ³He are affected most strongly by pores smaller than ξ_0 , and which ones are dominated by bigger pores [10]. Computer simulations of 98.2% porous base-catalyzed aerogels [7,8] reveal a mean free path ~2200 Å and that the largest distance from any point in the open volume to silica is 300 Å. Thus, all ³He is within ~ ξ_0 of silica.

In this experiment we set out to modify the distribution of the correlations of the disorder relative to ξ_0 in order to determine its role in suppression of the superfluid. This was accomplished by coating the aerogel with a thick ⁴He film which preferentially fills the smallest pores and thus raises the lower cutoff of the correlations of disorder sampled by the ³He phase.

We monitored the period, $P \approx 1.14$ ms, of a torsional oscillator (TO) containing an aerogel sample. A concentric-plate capacitor in the head of the TO, inside which the aerogel was grown (inset of Fig. 1), allows us to determine the molar fraction of ⁴He, x_4 [11]. The 98.2% porous base-catalyzed aerogel (0.4 cm³ open volume and 9.3 m² area), sintered powder (0.4 cm³ open volume and 4.2 m² area), and a 0.3 cm³ bulk volume outside the cell constitute the experimental arrangement. The temperature was measured with a ³He melting curve thermometer. Data were taken while ramping the temperature from 0.7 to 2.5 mK at ~8 μ K/h.

As the 3 He- 4 He sample can be prepared in different ways [11], the interface between the 3 He and 4 He phases can

FIG. 1. TO period shifts for pure ³He (dotted line) and for 2.0% ⁴He (solid line) at 21.6 bar. Periods have been offset to be identical at T_c^{bulk} . Vertical dashed lines indicate (from left to right) T_c^{aero} for pure ³He, T_c^{aero} for 2.0% ⁴He, and T_c^{bulk} . The left inset shows a schematic of the TO, illustrating the capacitor. The lower inset highlights the region near T_c^{aero} showing how T_c^{aero} is determined from the intersection of dotted lines representing ΔP vs T in aerogel and the behavior in the bulk. The periods are offset for clarity; the temperature scale is identical to that of the main figure.

take on numerous metastable configurations. In this paper, with the exception of the 34% ⁴He sample, we discuss only ³He-⁴He samples that are formed by slow cooling of a ³He-⁴He mixture through the phase separation transition. The 34% ⁴He sample was prepared by sequential deposition of the ⁴He and ³He while the temperature of the aerogel was maintained below 100 mK.

We first surveyed the behavior of pure ³He in aerogel as a function of pressure. The cell also contained a small (~150 μ m thick) slab of bulk ³He fluid between the aerogel and the mating cup of the TO. The T_c^{aero} and $\rho_s^{\text{aero}}/\rho$ as a function of pressure were similar to those of another sample [3]. In order to carry out the experiment to examine the effect of ⁴He we restricted our experimental investigation to a pressure p = 21.6 bar. The period signal for pure ³He is shown in Fig. 1.

The cell's construction (presence of the capacitor, large fill line together with an irregular bulk ³He volume) results in numerous resonances that appear in Fig. 1. Other than making the selection of T_c difficult, they do not play a role in the discussion that follows. With the addition of more than 10% ⁴He we find that these resonances are quenched and replaced with numerous small but reproducible resonances which can give the appearance of noise.

When 2.0% ⁴He (enough to coat the entire aerogel surface with solid ⁴He) was added [12], we observed that T_c^{aero} increased by ~0.06 mK (Fig. 1). The shift in T_c^{aero} was determined from the onset of the decrease of the period (Fig. 1, inset). This increase is much smaller than the suppression of T_c^{aero} of pure ³He to 1.76 mK from $T_c^{\text{bulk}} = 2.28$ mK. We also observed an increase of ~20% in the magnitude of the period shift, ΔP , due to the decoupling of the superfluid ³He. The elevation of T_c^{aero} by the addition of 2% ⁴He is not directly comparable to that seen by Sprague *et al.* [6] at H = 1.5 kOe. They found the suppression of T_c^{aero} due to magnetic scattering to be proportional to H^2 and would have predicted no elevation of T_c^{aero} for ⁴He added at H = 0.

The ⁴He molar fraction was not identical in the aerogel, sinter, and dead bulk volumes because of differences in their physical environments [11]. We found that samples with x_4 in aerogel between 2% and 11% were not stable, and that the ⁴He was expelled in favor of ³He (leaving only the ~2%⁴He strongly attracted to the silica). Similarly, $x_4 \ge 40\%$ was unstable in the aerogel, and the ³He phase was replaced by the ⁴He-rich phase.

We therefore examined samples with 13%, 21%, and 34% ⁴He content. Following the addition of ⁴He, we observed a further increase in T_c^{aero} from 1.82 to 1.90 mK (Fig. 2) while in contrast to the 2% ⁴He results, ΔP decreased substantially making the identification of T_c^{aero} progressively more difficult. Fortunately, with the addition of ⁴He, the strong resonant structure (Fig. 1) is quenched, and we were able to use the sharp onset of dissipation (inset of Fig. 2) to fix T_c^{aero} .

FIG. 2. TO period shifts for four different ⁴He amounts at 21.6 bar. The dotted line shows the contribution from the slab of bulk ³He. The dashed line for the 2% ⁴He curve serves to guide the eye through the resonance. Inset: the TO dissipation signal for the 12.7%, 21.3%, and 33.9% ⁴He samples showing the sharpness of the transition and how T_c^{aero} was chosen (arrows). Vertical dashed lines indicate T_c^{aero} for 2.0% ⁴He (left) and T_c^{bulk} (right). The temperature scale is identical to that of the main figure.

In the following analysis we consider the ³He-⁴He mixture to be phase separated at T < 3 mK [11,14] and neglect the $\approx 14\%$ molar volume difference between liquid ³He and ⁴He. The superfluid component, $\rho_s^{\text{aero}}(T)$, is related to the period of the TO, P(T), by the relation

$$\frac{P(T_c) - P(T)}{P_0 - P_{\text{empty}}} = \frac{(1 - x_4)}{\alpha} \frac{\rho_s^{\text{aero}}(T)}{\rho}.$$
 (1)

Here $P_0 - P_{empty}$ is the total period shift due to filling the cell with pure ³He at this pressure, the $(1 - x_4)$ term accounts for the replacement of ³He by ⁴He, and α is a measure of the tortuosity of the superflow through the porous medium. For an ideal cylindrical flow, $\alpha = 1$, and for a very tortuous one, $\alpha \rightarrow \infty$. For α to be appropriately used, it has to describe the tortuous streamlines of a homogeneous superfluid. Consequently, the scale of the structure of the porous medium has to be much greater than the characteristic length scale of superfluid ³He, ξ_0 . All smaller scale disorder would then be manifested as intrinsic to the properties of the superfluid in aerogel, and lead to a "coarse-grained" superfluid density [15]. At p = 21.6 bar $\xi_0 \approx 200$ Å, so one can only consider tortuosity as arising from structure ≥ 1000 Å in scale. Our aerogel appears to be homogeneous on these lengths, and the TO was cylindrically symmetrical, so $\alpha = 1$. The addition of ⁴He progressively removes the densest regions of aerogel from contact with superfluid ³He [16]. The ⁴Herich component (film) follows the structure of the aerogel, hence it cannot introduce new correlations with length scale larger than that of aerogel. Consequently, the sample remains homogeneous on length scales of ≥ 1000 Å, and we keep $\alpha = 1$.

From the knowledge of x_4 and α we can calculate the superfluid fraction with ⁴He present in the cell, once the contribution of the bulk ³He sample is subtracted off. We used the known hydrodynamic behavior of bulk ³He in a slab [17] (dotted line in Fig. 2) to fit the period shift data in the region between T_c^{aero} and T_c^{bulk} . The curves for $\rho_s^{\text{aero}}/\rho$ vs temperature are shown in Fig. 3. Our results are summarized in Fig. 4 where we show $\rho_s^{\text{aero}}/\rho$ at $0.5T_c^{\text{aero}}$ and T_c^{aero} for various x_4 in the cell.

Two different regimes characterize the ³He-⁴He interface as the ⁴He amount is increased. In the first ["van der Waals regime" (VDW)], a thin VDW ⁴He film coexists with ⁴He filled pores as a consequence of the interplay between the VDW adsorption and capillary condensation [18]. Upon adding ⁴He, successively larger pores are filled with the ⁴He-rich phase, but the thin VDW film is still present. In the second ("capillary-condensed regime"), there is only a thick ⁴He-rich film. Its capillary condenses around the regions rich in silica, leaving the ³He phase in the center of the open regions devoid of silica (biggest pores), thus altering the structure of the medium sampled by the ³He superfluid. Finally, at some $x_4 = x_c$, the regions of ³He get completely encapsulated by the ⁴He-rich phase and thus isolated into islands. The particular value of x_c depends on the structure of the big voids. For example, for closely packed identical spherical

voids, $x_c = 1 - \pi/3\sqrt{2} = 26\%$. The measured T_c^{aero} and $\rho_s^{\text{aero}}/\rho$ for the sample with 13% ⁴He do not differ much from that with 2% ⁴He which is consistent with the system being in the van der Waals regime. By adding 2% and 13% of ⁴He to ³He in 98% porous aerogel, we decrease its effective porosity to about 96% and 85%, respectively. The ⁴He occupies the roughest and densest regions of silica leaving the interconnected biggest pores virtually intact. This picture also fits in with the observation that superfluidity of pure ³He is entirely suppressed in 95% open aerogel [19]. In 95% porous silica, the size of the biggest pores will decrease compared to those in 98% samples. Both results argue that T_c^{aero} and $\rho_s^{\text{aero}}/\rho$ reflect the presence of interconnected voids in aerogel.

In the "capillary condensed region," the connectivity of different parts of ³He starts to be affected by ⁴He encapsulation; hence, the superflow can be suppressed even though the local Cooper pairing is still as strong as it was for pure ³He. This picture is consistent with our observation that T_c is not suppressed further by the addition of ⁴He, but that the $\rho_s^{\text{aero} is}$ (21% and 34% samples). The behavior looks similar to the superconductivity of disordered metal films where, depending on preparation, the films could be either uniformly disordered or granular [20]. In the granular film, the phase coherence between the grains can be destroyed (while the local T_c and the order parameter in the grains are unaffected). The decrease in ρ_s^{aero} with the addition of ⁴He could be attributed to weakened phase coherence between the more open regions. In this sense, superfluid ³He in aerogel with 30% ⁴He looks similar to a granular superconductor.

A somewhat similar behavior (relatively robust T_c , strong suppression of ρ_s) has also been seen in hightemperature superconductors with defects. The phenomenon is attributed to the inhomogeneity of scattering [21], and may also play a part in the ³He-aerogel system.

Immediately after the discovery of superfluidity in aerogel the homogeneous scattering model [2,22] that treats aerogel as a collection of small uncorrelated impurities was proposed and showed qualitative success in describing the $T_c^{\text{aero}}(\xi_0)$ [1,2,6]. In this theory, the suppression of both ρ_s^{aero} and T_c^{aero} is determined by the ratio of the coherence length to the quasiparticle mean free path. In our experiment, with the addition of ⁴He, the mean free path should decrease because of the increased cross section of the ⁴Hecovered silica, further suppressing both ρ_s^{aero} and T_c^{aero} . Thus, the observed enhancement of T_c^{aero} accompanied by the reduction of ρ_s^{aero} is inconsistent with this model. By design, this theory characterizes all the disorder to be on

FIG. 3. $\rho_s^{\text{aero}}/\rho$ obtained from the data in Fig. 2 using Eq. (1) after the bulk ³He contribution (dotted line in Fig. 2) is subtracted off. The dashed line guides the eye through the resonance in the 2.0% ⁴He data (dotted line).

FIG. 4. T_c^{aero} (\bullet , left axis) and $\rho_s^{\text{aero}}/\rho$ at $T = 0.5T_c^{\text{aero}}$ (\bigcirc , right axis) vs x_4 . The lines connect the data points.

a scale much smaller than ξ_0 , resulting in a superfluidity that is uniformly suppressed everywhere. A more realistic modification has appeared recently [22], which models the long range inhomogeneity of aerogel as a collection of periodically distributed spherical voids. Because of the proximity effect, it produces a single T_c^{aero} for the sample as a whole. However, the weight of the strongly scattering regions in the determination of T_c^{aero} is exponentially small compared to that of weak scattering regions. This result is very much in agreement with our finding that T_c^{aero} did not decrease (and even slightly increased) after the strongly scattering regions are filled with ⁴He.

Confinement of ³He by surfaces suppresses the T_c [23– 25]. The addition of even a thin layer of superfluid ⁴He increases the T_c [24], presumably due to change of the scattering from diffusive to specular which restores the component of the order parameter parallel to the surface. It is reasonable to assume that for a ⁴He film to restore the T_c , its surface has to be flat on the scale of ξ_0 . In aerogel, only at the highest ⁴He amounts (21% and 34% samples) is the ³He⁴He interface expected to be smooth on the scale of $\xi_0 = 200$ Å. Thus, the small increase in T_c^{aero} , observed at highest x_4 , could also be a consequence of the changed boundary conditions around the strongly scattering regions.

In summary, we have examined the superfluid density, transition temperature, and ⁴He content of ³He-⁴He mixtures in 98.2% open aerogel using a novel torsionoscillator and capacitance sensor cell. The results show that T_c is relatively insensitive to the ⁴He content, while ρ_s is suppressed very strongly by the addition of ⁴He. Combined with the earlier observation of a homogeneous onset of superfluidity of ³He in 98% aerogel, and no superfluidity of ³He in 95% aerogel, it implies that the most open regions in the aerogel with long range correlations are responsible for the T_c . In addition, modification of the short range correlated regions by the presence of ⁴He affects the long range order in a manner similar to that of granular superconductors.

We acknowledge comments from W. P. Halperin and conversations with M. H. W. Chan and N. Mulders as well as their expertise in preparing the aerogel sample. The research was supported under NSF-DMR 94-24137.

- J. V. Porto and J. M. Parpia, Phys. Rev. Lett. **74**, 4667 (1995);
 J. V. Porto and J. M. Parpia, Czech J. Phys. **46**, 2981 (1996), Suppl. S6.
- [2] D. T. Sprague et al., Phys. Rev. Lett. 75, 661 (1995).

- [3] K. Matsumoto *et al.*, Phys. Rev. Lett. **79**, 253 (1997); **79**, 2922(E) (1997).
- [4] Depending on the growth conditions, different aerogel samples of the same porosity can give slightly different values of T_c^{aero} and ρ_s^{aero} [3].
- [5] H. Alles et al., Physica (to be published).
- [6] D.T. Sprague et al., Phys. Rev. Lett. 77, 4568 (1996).
- [7] A. Hasmy et al., Phys. Rev. B 50, 6006 (1994).
- [8] J. V. Porto, Ph.D. thesis, Cornell University, 1994 (unpublished); J. V. Porto *et al.* (to be published).
- [9] M. H. W. Chan et al., Phys. Rev. Lett. 61, 1950 (1988).
- [10] We use the term *pore* even though the conventional concept of pores inadequately describes this dilute material in which the voids are bounded by a sparse collection of strands instead of well defined walls.
- [11] A. Golov, J. V. Porto, and J. M. Parpia, J. Low Temp. Phys. **110**, 591 (1998).
- [12] The surface solid has a density of $\approx 35 \ \mu \text{mol/m}^2$ on aerogel [13]. For ³He at 21.6 bars in our aerogel sample this corresponds to about 2.2% of the helium atoms.
- [13] P.A. Crowell et al., Phys. Rev. B 51, 12721 (1995).
- [14] S. B. Kim, J. Ma, and M. H. W. Chan, Phys. Rev. Lett. 71, 2268 (1993); N. Mulders and M. H. W. Chan, Phys. Rev. Lett. 75, 3705 (1995).
- [15] For a related discussion, see Ref. [13], p. 12729.
- [16] Our measurements of the tortuosity of the ⁴He component at p = 21.6 bars [11] reveal that between $x_4 = 2\%$ and 20% -30% it drops from $\alpha_4 \ge 5$ to $\alpha_4 \approx 2$. At $x_4 =$ 100%, $\alpha_4 = 1.11$. The results for thin ⁴He films and ⁴He in full pores in 91% porous aerogel, $\alpha_{film} = 10$ and $\alpha_{full} = 1.19$, are similar [13]. Thus, for small x_4 , the ⁴He-rich phase forms a filmlike state which follows the tortuous interconnected silica strands. As x_4 increases to 20% -30%, the connectivity of the ⁴He-rich phase improves as it capillary condenses around neighboring strands.
- [17] J. M. Parpia et al., J. Low Temp. Phys. 61, 337 (1985).
- [18] P.G. de Gennes, in *Physics of Disordered Materials*, edited by D. Adler, H. Fritzsche, and S.R. Ovshinsky (Plenum, New York, 1985).
- [19] T. Hall and J. M. Parpia, Bull. Am. Phys. Soc. 34, 1197 (1989).
- [20] R.C. Dynes, R.P. Barber, Jr., and F. Sharifi, in Ordering Disorder: Prospect and Retrospect in Condensed Matter Physics, edited by V. Srivastava, A.K. Bhatnagar, and D.G. Naugle (AIP, New York, 1993).
- [21] M. Franz *et al.*, Phys. Rev. B **56**, 7882 (1997), and references therein.
- [22] E. V. Thuneberg et al., Phys. Rev. Lett. 80, 2861 (1998).
- [23] K. Ichikawa et al., Phys. Rev. Lett. 58, 1949 (1987).
- [24] M. R. Freeman and R. C. Richardson, Phys. Rev. B 41, 11011 (1990); S. C. Steel *et al.*, Physica (Amsterdam) 165-166B, 599 (1990); S. M. Tholen and J. M. Parpia, Phys. Rev. Lett. 68, 2810 (1992).
- [25] L. H. Kjaldman, J. Kurkijarvi, and D. Rainer, J. Low Temp. Phys. 33, 577 (1978).

^{*}Present address: Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139.