Capillary Condensation of Phase Separated Liquid 3He-4He Mixtures in Aerogel

A. Golov, J. V. Porto, and J. M. Parpia

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA

We have studied details of the phase separation of 3He-4He mixtures in aerogel for 4He concentrations between 13 - 36% and at pressures of 0 and 22 bar. Simultaneous measurements of the 4He concentration (measured with a parallel-plate capacitor) and of the tortuosity of the 4He-rich phase (using the period of the torsional oscillator) provide evidence for the diversity of configurations of the 3He-4He interface as a consequence of capillary condensation. Thus, for the same 4He content within the aerogel, the 4He-rich phase can have different interconnectivities determined by preparation history.

PACS numbers: 67.60.Fp, 68.10.-m, 68.45.Gd, 61.43.Hv.

1. INTRODUCTION

It has been recently found that the phase diagram of liquid 3He-4He mixture in highly open aerogels differs considerably from that of the bulk.1 The novel feature is that even at zero temperature, phase separation seems to be completely suppressed at low 4He concentrations.

For $x_4 \leq 20\%$, the 4He-rich phase acts as a thick film that covers the aerogel surface below T_{ps}, the temperature of phase separation. Capillary condensation is known to cause metastability and hysteresis,2 so different 3He-4He interface configurations could be very long-lived. In Fig. 1 we illustrate how the morphology of the 3He-4He interface can be rather different for identical volumes of 4He-rich phase because of changes in the number of capillary condensed “bridges” between adjacent aerogel strands. These differences are manifested experimentally in the tortuosity of the 4He film.

It is known that pressure changes the thermodynamics of the phase
Fig. 1. Three configurations of 4He-rich phase at the same x_4. Left - film state (few "bridges"), right - capillary condensed state (many "bridges").

separation of bulk 3He-4He mixture. Therefore, we compare the phase diagram of 3He-4He in aerogel at $p = 0$ and $p = 21.6$ bar.

2. EXPERIMENTAL TECHNIQUE AND RESULTS

We detect both the superfluid and phase-separation transitions by monitoring the resonant frequency and dissipation of a torsional oscillator (TO) that contains the aerogel sample. Providing the amount of 4He in the cell is known, the period shift due to the decoupling of superfluid 4He can be used to determine the tortuosity of the 4He-rich film. A parallel-plate capacitor located in the head of the TO inside which the aerogel has been grown, allows us to determine x_4, the molar fraction of 4He. The 98.2 % porous aerogel (0.4 cm3 open volume and 9.3 m2 surface area), sintered powder (0.4 cm3 open volume and 4.2 m2 surface area) and a "dead" bulk volume (0.3 cm3), about 10% of which is located in the torsion head constitute the experimental arrangement. When the temperature of the cryostat is cycled, the distribution of 4He between the aerogel, sintered powder and filling line changes, making it important to monitor x_4 in the aerogel.

We were unable to make mixtures with 4He concentrations in the range 4-10 % at low temperatures, since below T_p, the 4He preferentially moved into the sinter (or filling line). To fill the cell with a mixture we first admitted pure 4He to the empty cell at a temperature below 0.1 K. The 4He coated the surfaces of the cell (including the strands of aerogel) with a thick 4He film. This "film state" (with a different configuration of the 3He-4He interface from that achieved by cooling a 3He-4He mixture from 1K) persisted even after the remaining volume was filled with 3He and the cell brought up to a pressure of 21.6 bar. If the cell was warmed above ~ 0.2 K, the system displayed a remixing transition and the result was a pronounced hysteresis in the amount and distribution of the 4He in the aerogel.

The concentration, x_4 in aerogel is modified when a few distinct tem-
Fig. 2. An example of the capacitance, period and dissipation signals from a 3He-4He mixture in aerogel during thermal cycling; $p = 21.6$ bar.

Temperature bands are traversed. These bands are typically separated by a phase transition in one of the cell parts. As we cooled from 0.8 K with 14 mmole of 4He ($p = 21.6$ bar), we observed the sequence shown in Fig. 2 and summarized below:

1. $T > 0.56$ K. 3He-4He solution ($x_4 \approx 21\%$) fills the cell.
2. 0.53 K. Superfluid transition of the 4He in the aerogel.
3. 0.47 K. The phase separation transition in the aerogel ($x_4 \approx 25\%$).

These measurements were taken while ramping the temperature at ~ 10 μK/sec and yielded sharp transitions. We ascribe T_{ps} and T_λ to the steepest parts of the oscillator drive vs temperature (marked by circles in Fig. 2). On warming, the values of T_{ps} and T_λ are different from the values while cooling and reflect changes in x_4 within the aerogel.

Fig. 3 shows the set of points, $T_{ps}(x_4)$, obtained in this way for $p = 0$ (o) and $p = 21.6$ bar (●). At $x_4 > 20\%$, (p=0), our data are in good agreement with the results of Chan's group1 for 3He-4He in an aerogel of the same porosity (△). T_{ps} decreases when the pressure is increased from 0 to 21.6 bar in a manner similar to that in bulk 3He-4He mixtures, reflecting the decrease of the energy of mixing over this pressure range.3
Fig. 3. Locus of T_{ps} vs x_4 obtained as in Fig. 2 (\circ - $p = 0$, \bullet - $p = 21.6$ bar). Also shown are the data from Kim et al.1 at $p = 0$ (\triangle).

The discrepancy between our $p = 0$ data and the low T point from Chan’s group1 at $x_4 < 20\%$ can either be ascribed to different microscopic structures of the aerogels or the diversity of metastable states in this region of x_4. When we cooled a $^3\text{He}^4\text{He}$ solution through T_{ps}, or warmed it into the mixed state from $T \sim 0.2$ K, the scatter of the $T_{ps}(x_4)$ points was modest, and the data fall on a single curve on the phase diagram (circles in Fig. 3). However, this is not the case for the “cold-deposited” samples. The morphology of the “cold-deposited” ^4He films is expected to differ from that of those cooled from a mixed $^3\text{He}^4\text{He}$ solution. Thus T_{ps} depends not only on x_4, but also on the particular morphology of the $^3\text{He}^4\text{He}$ interface. The dependence on morphology is also seen in adsorption isotherms in porous media when capillary condensation is important. We speculate that when a ^4He film is slowly deposited onto bare aerogel, it simply follows the strand’s surface and has no opportunity to build capillary condensed “bridges” between adjacent strands. If ^3He liquid is gently added to fill the rest of the system at $T \ll T_{ps}$, the interface between ^3He-rich and ^4He-rich phases follows the shape of the ^4He film. In contrast, when a $^3\text{He}^4\text{He}$ mixture is cooled in aerogel, even at $T > T_{ps}$ domains of locally enhanced ^4He concentration occur between adjacent strands. After cooling through T_{ps}, the $^3\text{He}^4\text{He}$ interface probably forms near the regions of enhanced ^4He concentration, and stabilizes the “bridges”.
3. DETERMINATION OF x_4 AND χ_4

The 4He film’s tortuosity can be characterized by a parameter χ_4, the fraction of the 4He superfluid inertially coupled to the oscillator. Thin 4He films on aerogel have $\chi_4 \approx 0.90$, while liquid 4He in full-pore aerogel has a $\chi_4 \approx 0.16$. We conclude that χ_4 decreases as the number of connections between the aerogel strands increase. Thus a small χ_4 must reflect an increased number of capillary condensed “bridges” between the aerogel strands.

The determination of χ_4 proceeds from a period measurement near 3 mK where almost all the 4He is superfluid and the molar volumes of 3He-rich and 4He-rich phases are close to their bulk values V_3 and V_4. When a sample contains N_3 (N_4) moles of 3He (4He) ($x_4 = N_4/(N_3 + N_4)$), the number density of the mixture is ($N_3 + N_4)/(N_3 V_3 + N_4 V_4$). The mass density is $(m_3 N_3 + m_4 N_4)/(N_3 V_3 + N_4 V_4)$ (where $m_3 \approx 3$ g/mole and $m_4 \approx 4$ g/mole).

The capacitance increment is given by

$$C_x - C_{emp} \propto \frac{N_3 + N_4}{N_3 V_3 + N_4 V_4} = \frac{1}{V_3 - \Delta V_{34} x_4}, \tag{1}$$

where $\Delta V_{34} = V_3 - V_4$. Hence,

$$x_4 = \frac{V_3}{\Delta V_{34}} (1 - \frac{1}{1 + \frac{C_x - C_0}{C_0 - C_{emp}}}) \approx \frac{V_3}{\Delta V_{34}} \frac{C_x - C_0}{C_0 - C_{emp}}, \tag{2}$$

where C_{emp}, C_0 and C_x, are the capacitances when the cell is empty, filled with 3He, and filled with mixture respectively.

The period shift at 3 mK is related to x_4 and χ_4 through the expression

$$P_x - P_{emp} \propto \frac{3 N_3 + 4 N_4 \chi_4}{N_3 V_3 + N_4 V_4} = \frac{3 + (4 \chi_4 - 3) x_4}{V_3 - \Delta V_{34} x_4}. \tag{3}$$

Finally,

$$\chi_4 = \frac{3}{4} \left[\frac{P_x - P_{emp}}{P_0 - P_{emp}} \left(\frac{1}{x_4} - \frac{\Delta V_{34}}{V_3} \right) + 1 - \frac{\Delta V_{34}}{V_3} \right], \tag{4}$$

where P_{emp}, P_0 and P_x are the periods of the pendulum when it is empty, filled with 3He and filled with mixture, respectively.

The values of x_4, χ_4 calculated in this manner are shown in Fig. 4. It is generally true that at higher x_4, χ_4 is smaller reflecting the greater likelihood of more connections between strands. However, it is crucial to realize that the scatter in Fig. 4 is not due to the uncertainty in determining x_4 and χ_4. We found that χ_4 depends on the thermal history of a particular sample for a fixed x_4. This is borne out by differences in the signature of the $\rho_s(T)$ of the 3He superfluid.
Fig. 4. Combinations of x_4, χ_4 determined for different samples at 21.6 bar.

4. SUMMARY

We have demonstrated that the coexistence region of $^3\text{He}-^4\text{He}$ mixtures is detached from the λ-line at elevated pressures. Further, we have observed the metastability of the configuration of the interface between ^3He-rich and ^4He-rich phases in aerogel. We have used a torsional oscillator to probe the tortuosity of the ^4He-rich component and a capacitor to determine the ^4He content. The combined torsional oscillator - capacitor technique is ideal for probing this region of configurational and concentration metastability.

ACKNOWLEDGMENTS

We thank M. H. W. Chan and N. Mulders for discussions and the aerogel fabrication. This research was supported under NSF–DMR-9424137.

REFERENCES