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Supplementary Figure 1: Setup for NMR measurements. a, Schematics of the NMR
setup. Silicon-silicon sample container sits on a silver plate thermally connected to the copper
nuclear stage of the cryostat. Silver foils glued on both sides of the silicon structure and
screwed on the silver plate help to thermalise the sample container. Nanofabricated
slab-shaped cavity is filled with helium through a sintered silver heat exchanger having surface
area 8 m2. 3He in the cavity is cooled via the 3He column in the fill line. Temperature of the
silver plate is measured using a platinum NMR thermometer. Main NMR field H0 is created
with a solenoid coil located inside the 4 K bath far from the sample region. Saddle-shaped
transmitter coil used to create the NMR pulse field Htx is wound on sides of a Macor holder
sliding around the sample region on the silver plate. The precessing sample magnetisation is
measured with a receiver coil wound tightly around the sample container. b, Dimensions of the
sample container. Most of the volume in the fill line is shielded from NMR measurements by
the metallic fill line. The small unshielded part on the bottom end as well as the small
compartment on the far end of the cavity have volumes of the same order as the cavity to
result in three comparable peaks in NMR spectra. Triangular lattice of 100µm diameter pillars
separated by 500µm reduces the distortion of cavity due to liquid overpressure.
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Supplementary Figure 2: FEM simulation of distortion of the cavity due to
overpressure. a, Change in the cavity height due to 1 bar internal pressure, as simulated with
finite element method (FEM), using COMSOL Multiphysics, increases sharply when moving
from the cavity edges towards the centre. Maximal simulated distortion with triangular lattice
of support pillars in the centre region is 2.1 nm/bar. We estimate a 0.5 nm/bar uncertainty in
the simulation and thus use higher value 2.6 nm/bar for the maximal cavity height distortion in
analysis. b, Three-dimensional illustration of the internal cavity distortion. The effect has been
greatly magnified here for clarity. We use the same material parameters for silicon as in
Ref. [1]: density ρSi = 2329 kg/m3, the Young’s modulus ESi = 170 GPa, and the Poisson’s
ratio νSi = 0.28.
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SUPPLEMENTARY NOTE 1: Temperature correction

We measure the temperature TAg of the silver plate on which the sample container sits. Due to
thermal boundary resistance RK across the sintered silver heat exchanger, there is a temperature
gradient ∆T between the sample helium and the silver plate: ∆T = THe − TAg = RKQ̇, where

THe is the helium temperature and Q̇ = Q̇0 + Q̇NMR is the heat flux into the sample [2]. Here

residual constant heat flux is Q̇0 and the heat flux due to NMR pulses is Q̇NMR. Typical form
of boundary resistance is RK = K

Tα , where K is a constant dependent on material and boundary
properties [3]. At high temperatures we expect α = 3, following from the acoustic mismatch
of phonons at the interface. However, at low temperatures below 10 mK, α typically decreases
towards unity and is different for pure 3He and for mixtures of 4He and 3He [4]. Therefore, we
take α as a free parameter for each surface preplating investigated.

We fit α by measuring the change in ∆T as a function of Q̇ across the heat exchanger over the
whole temperature range of interest. This is done by performing full temperature sweeps using
two different-sized NMR pulses denoted as pulse A and pulse B, where the total rf-field power
generated by pulse A is ten times the power generated by pulse B. These pulses correspond
to tipping angles β ≈ 10◦ and β ≈ 3◦, respectively. We denote the two significantly different
NMR-induced heat fluxes into the sample by Q̇NMR,A and Q̇NMR,B , which result in two different
dependences of the superfluid frequency shift in the cavity on the measured silver-plate tem-
perature (Supplementary Fig. 3a,c). Since any measured frequency shift ∆f in the superfluid
3He-A in the cavity, using small-tipping-angle pulses, always corresponds to the same helium
temperature, we can calibrate the additional heating using equation∫ THe

TAg

dT

RK
=
Tα+1

He − Tα+1
Ag

(α+ 1)K
= Q̇. (S1)

From this it follows for any ∆f

Q̇A − Q̇B = Q̇NMR,A − Q̇NMR,B = Q̇NMR,A−B =
Tα+1

Ag,B − T
α+1
Ag,A

(α+ 1)K
. (S2)

Since K and Q̇NMR,A−B are both constants, we can fit the measured temperature differences
corresponding to each frequency shift to determine α. We find it to be independent of both
temperature and pressure over the 0.5–1.5 mK, 0.0–5.5 bar range. With “specular” boundary
condition α = 2.5 and with “diffuse” α = 1.5. These values collapse data of different pulses,
see Supplementary Fig. 3a,c. We have also compared the frequency shifts using pulse B and a
medium-sized pulse having four times the power generated by B. The frequency shifts match
within the experimental error, leading us to conclude that the heating caused by pulse B is
negligible, i.e., Q̇NMR,B ≈ 0.

Given the determination of α for each boundary condition, we can make the final correction for
residual heat leak into the sample, Q̇0. This is done by comparison of the measured silver plate
temperature TAg ≡ T fill

c during the superfluid transition in the fill line bulk marker, which is
most directly connected to the heat exchanger, with the literature value given by Greywall, THe ≡
TG

c [5]. The comparison is made at each pressure for both pulse A and pulse B (Supplementary
Fig. 3b,d). Referring to Supplementary Eq. (S1), this procedure determines

CA = Tα+1
c,G − Tα+1

c,fill,A = (α+ 1)
(
Q̇0 + Q̇NMR,A

)
K

CB = Tα+1
c,G − Tα+1

c,fill,B = (α+ 1)Q̇0K, (S3)

where we use the fact that the heating due to pulse B is negligible. Then, the conversion of any
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Supplementary Figure 3: Calibration of heating caused by NMR pulses. a, c,
Frequency shifts in the cavity at two pressures with “specular” and “diffuse” boundary
conditions for NMR pulses A and B. Correction between pulses has been done using
Supplementary Eq. (S2). b, d, Difference between measured superfluid transition temperatures
T fill

c in the fill line bulk marker and the literature value TG
c at different pressures corresponding

to values of TG
c between 0.9 and 1.6 mK. Each upwards and downwards pointing triangle

represents the average of several measured bulk transitions. Corrected temperatures are
reached using Supplementary Eq. (S4).

measured temperature TAg to actual helium temperature THe is

THe =
(
Tα+1

Ag + CA

)1/(α+1)

, (S4)

with a similar expression for pulse B.
The results for CA and CB (Supplementary Fig. 4) show pressure independence. Therefore,

the values are averaged over pressure in order to correct all temperatures in both the main text
and the Supplementary Information. The corrected values of bulk transition temperatures in
fill line are shown in Supplementary Fig. 3b,d. The usage of constant α and universal pressure-



7

0.0

0.1

0.2

0.3

0.4

0.5
C
A

,B
 (m

K
3.

5 )
a

CA = 0. 42 ± 0. 03

CB = 0. 18 ± 0. 03

Boundary: Superfluid 4He
α= 2. 5

0 1 2 3 4 5 6
Pressure (bar)

0.00

0.05

0.10

0.15

0.20

C
A

,B
 (m

K
2.

5 )

b

CA = 0. 11 ± 0. 02

CB = 0. 06 ± 0. 01

Boundary: Solid 4He
α= 1. 5

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

C
A

−
C
B
 (m

K
α

+
1 )

c

Superfluid 4He

Solid 4HeSolid 4He

0 1 2 3 4 5 6
Pressure (bar)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

C
A
/C

B

d

CA/CB = 2. 15 ± 0. 50

Supplementary Figure 4: Model parameters used in temperature correction. a, b,
Constants CA and CB (Supplementary Eq. (S3)) with two boundary conditions as defined at
bulk superfluid transitions in the fill line. Each point is an average of several measured T fill

c ,
same as in Supplementary Fig. 3b,d. The values of CA and CB are independent of pressure and
significantly smaller with “diffuse” boundary condition due to smaller “poisoning” of heat
exchanger by the thinner 4He film. c, Difference between constants CA and CB as a function of
pressure with both boundary conditions, giving the correction between the pulses. d, The ratio
CA/CB = 1 + Q̇NMR,A/Q̇0 is defined from the same measurements of T fill

c and does not depend
on the boundary condition or the pressure, as expected. The coloured bands in each panel
indicate the values averaged over pressure with the widths of the bands showing the
uncertainties.

independent CA or CB satisfactorily corrects all the measurements within error limits from TG
c .

The uncertainty limits of CA and CB increase the uncertainty of the corrected temperatures as
compared to the small error in the original measured temperatures.

We assume that the upper bound of the boundary resistance with a solid 3He surface boundary
layer is set by that of a solid 4He layer in order to quantify uncertainties in temperature in this
case.
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SUPPLEMENTARY NOTE 2: Theoretical calculation of the order parameter in
3He slab geometry

The theoretical procedure to obtain the spatial profile of the order parameter in the cavity is
based on the quasiclassical theory of superfluid 3He [6]. The relevant details for slab geometry
can be found in many publications, see for example Refs. [7, 8].

The multi-component order parameter is determined self-consistently together with the qua-
siclassical quasiparticle correlator (Green’s function) ĝ(R,k; εm), which describes propagation
of quasiparticles with energy εm along straight classical trajectories. In cavities thinner than
D ∼ 10ξ0, not only the symmetry of the order parameter, but also the nature of the quasipar-
ticle scattering on surfaces determine the behaviour of the quantum condensate. The spectrum
of the sub-gap states in the vicinity of the surface is different depending on whether the scat-
tering is specular, diffuse, retroreflecting [9] (maximally pair-breaking in odd-parity superfluid),
or a mixture of these, resulting in the different suppression of both the order parameter and the
transition temperature.

The boundary conditions for the quasiclassical propagator at the surface encode the scattering
processes with high momentum transfer δk ∼ kF. We adopt the random S-matrix scattering
model [10–12] with unitary scattering matrix for particle-like excitations,

Sqq′ = −1− iη
1 + iη

∣∣∣
qq′
, (S5)

where {q, q′} are in-plane vectors, and the scattering is from q′(in) to q(out). For hole-like

excitations one has S̃q′q = S∗qq′ (final and initial states exchanged), and the entire particle-hole
space is covered by

Ŝ =

(
S 0

0 S̃†
)
. (S6)

Random Hermitian matrix η has properties

ηqq′ = 0, η∗qq′ηkk′ = κ(q − q′)δq−q′,k−k′ , (S7)

where overline refers to statistical average. The correlation cumulant is taken as a constant,
κ(q − q′) = 2W/

∑
q 1 [11]. Matrix η depends on a particular surface scattering picture and for

example can be expressed in terms of parameters of the randomly rippled wall model [10].
The S-matrix model allows a continuous description of surface scattering from specular to fully

diffuse limit by tuning the W -parameter, which we further generalize to include retroreflection by
multiplying S by the overall retro delta function δ−q,q′ . The amplitude of the specular reflection
is given as

Skp = −δkp
1− σ
1 + σ

(S8)

with surface self-energy σ determined from self-consistency equation σ = η 1
1+ση = 2W

1+σ . This
allows one to define ‘specularity’, i.e., the probability of specular scattering, of the surface as
S = ±(1 − σ)2/(1 + σ)2. The negative sign indicates retroreflection. For W = 0 one has σ = 0
with either completely specular S = +1 or retroreflective S = −1 surface; for W = 1 we get
σ = 1 and fully diffuse surface S = 0 with suppressed Tc(D) that exactly follows [11] the original
result for diffuse Tc suppression given by Kjäldman et al. (KKR) [13].

The boundary condition that connects the propagators of the incoming (pin) and outgoing
(pout) trajectories at the surface is written as [12]

Âĝ(pout) = ĝ(pin)Â, Â =
1 + iσ̂

1− iσ̂
. (S9)
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Supplementary Figure 5: Spatial dependence of energy gap in slab-shaped cavity.
With specular boundary condition for quasiparticles, the energy gap ∆A remains constant
equalling the corresponding bulk value. With diffuse boundary condition, the gap is suppressed
at the walls resulting in spatial dependence along the z-axis, whereas maximally pair-breaking
retroreflective boundary condition fully suppresses the gap at the walls. The values shown here
at three different temperatures (a, b, c), where Tc0 is the bulk superfluid transition
temperature, correspond to effective cavity height D/ξ0 = 4.95 (P = 5.50 bar in our cavity) and
are based on quasiclassical weak-coupling theory for superfluid 3He [6], following the
calculational methods presented in the text.

The surface self-energy σ̂ is momentum-independent and computed self-consistently from

σ̂ =
2W

1 + σ̂2
(ĝsurf − σ̂) . (S10)

Here the surface propagator for specular (or retro) reflection is averaged over the momenta
parallel to surface, which we can write as integration over incoming or outgoing momenta on the
Fermi surface (FS)

ĝsurf = 〈ĝin〉|| = 〈ĝout〉|| = 〈|v̂z|ĝin〉FS− = 〈|v̂z|ĝout〉FS+. (S11)

The integral is normalised with the area of FS in the reflective plain, πp2
F, i.e.,

〈. . . 〉|| =
1

πp2
F

∫∫
dpxdpy · · · =

1

π

∫
v̂z>0 or v̂z<0

dΩF|v̂z| . . . (S12)

In the normal state ĝsurf = ĝN = −i sgn(εn)τ̂3, and solution for surface self-energy is σ̂ = σĝN
with (1 + σ)σ = 2W .

In the presented calculations we assume that the quality of both surfaces of the cavity are
approximately equal and thus characterised by the same specularity parameter S, as is true
with silicon-silicon sample containers having even 4He preplating between the surfaces. Example
energy gap profiles corresponding to different specularities are shown in Supplementary Fig. 5.
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SUPPLEMENTARY NOTE 3: Connection between frequency shifts and energy
gap

Here we restrict the discussion to linear spin dynamics relevant to our NMR experiments with
small spin tipping angles β. The following discussion covers the observed frequency shift in the
cavity; the frequency shifts observed in the bulk marker volumes are discussed in Supplementary
Note 5.

In normal 3He the NMR precession occurs at the Larmor frequency fL = γH0/2π, where γ
is the gyromagnetic ratio of 3He. Frequency shifts ∆fsf = f − fL of different superfluid phases
below Tc are determined by the curvature of dipole energy as a function of rotations in spin
space [14]. Both positive and negative frequency shifts are possible depending on whether the
dipole energy is at minimum or at maximum before the spin-tipping NMR pulse, respectively.
In 3He-A the order parameter, and thus the magnitude of the dipole energy, is parametrised

with two unit vectors l̂ and d̂ exhibiting long-range order. Here l̂ ‖ L describes the orientation
of the orbital angular momentum of all the Cooper pairs, and the order-parameter vector d

points in the direction of zero spin projection: d̂ ⊥ S. In general, the directions of both vectors
are determined by a competition between orienting effects including external magnetic field,
boundaries of sample, dipole energy, and superfluid flow. Applied magnetic field H0 larger than

dipolar field HD ∼ 5 mT locks d̂ ⊥ H0, whereas the dipole energy is minimised when l̂ ‖ d̂.

Any surface introduces strong boundary condition l̂ ‖ ŝ where ŝ is normal to the surface. The
length scale over which boundaries affect the order parameter is determined by the dipolar length
ξD ∼ 10µm [14].

We have H0 ‖ ẑ and ŝ ‖ ẑ. The magnetic field defines the orientation d̂ ⊥ ẑ and the small

height of the cavity (D � ξD) forces l̂ ‖ ẑ everywhere in it. This dipole-unlocked configuration
maximises the dipole energy, resulting in a negative NMR frequency shift in the A phase [15, 16]:

f2 − f2
L = −γ

2λDNF

5π2χN

∆2
A = −

(
ΩA

2π

)2

. (S13)

Here ΩA is the A-phase Leggett frequency (the longitudinal resonance frequency) depending on
both the temperature and the pressure, and energy gap ∆A refers to the maximum A-phase

energy gap in the momentum space at p̂ ⊥ l̂. Here λD ∼ 10−6 sets the relative scale of the dipole
energy, NF is the density of states at the Fermi level, and χN is the normal state spin susceptibility
equalling the susceptibility of equal-spin-paired 3He-A. All pre-factors of ∆2

A depend only on the
normal state properties of 3He independent of the level of confinement or boundary condition.
Thus, all the dependences of the cavity frequency shift at constant pressure are fully defined by
the energy gap.

In a cavity with non-specular quasiparticle scattering at the walls, the gap acquires a spa-
tially inhomogeneous suppression ∆A(z) as seen in Supplementary Fig. 5. However, the NMR
precession in a confinement volume where D � ξD is uniform with the frequency shift [16, 17]

∣∣f2 − f2
L

∣∣ =
γ2λDNF

5π2χN

〈
∆2

A(z)
〉
, (S14)

where
〈
∆2

A(z)
〉

refers to the spatially averaged value of the squared energy gap, the experimental
determination of which we now discuss.

For compactness we write
∣∣f2 − f2

L

∣∣ = ζ
〈
∆2

A(z)
〉
, where ζ = γ2λDNF

5π2χN
is a pressure-dependent,

temperature-independent constant. In bulk in the Ginzburg-Landau (G-L) regime, near bulk

transition temperature Tc0, ∆2
A ∝ (1− T/Tc0). Therefore, in this regime, we define ISbulk

∆ and
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ISbulk by ∣∣f2 − f2
L

∣∣ = ζISbulk
∆

(
1− T

Tc0

)
= ISbulk

(
1− T

Tc0

)
. (S15)

Now clearly ζ = ISbulk/ISbulk
∆ .

For our “specular” (S = 0.98) surface, which shows essentially no Tc suppression, the measured
frequency shift corresponds to the spatially uniform and unsuppressed bulk gap ∆A, Supplemen-
tary Eq. (S13). Thus, we have for the precession frequency in the cavity∣∣f2 − f2

L

∣∣ = IS
′spec′

slab

(
1− T

Tc

)
, (S16)

where Tc = Tc0 to a good approximation. Here IS
′spec′

slab ≈ ISbulk is determined as a slope of
a linear fit between the cavity frequency shift and temperature close enough to Tc where the
dependence is expected to be nearly linear [16]:

IS
′spec′

slab =
∂
∣∣f2 − f2

L

∣∣
∂ (1− T/Tc)

, averaged over 0.90Tc < T < Tc. (S17)

Similarly, ISbulk
∆ is determined from a linear fit to the calculated bulk gap over equivalent tem-

perature range:

ISbulk
∆ =

∂∆2
A

∂ (1− T/Tc0)
, averaged over 0.90Tc0 < T < Tc0. (S18)

The choice of this temperature range is a suitable compromise between precision and accuracy
and justifies calling the proportionality constants IS as initial slopes, see Supplementary Fig. 6.

Determination of constant ζ using the ratio of the two abovementioned initial slopes provides
a high degree of cancellation of the systematic error arising from the choice of temperature range.
This is true for both weak-coupling and strong-coupling models in the G-L regime (Supplemen-
tary Note 4). Now we get

〈
∆2

A(z)
〉

=
ISbulk

∆

IS
′spec′

slab

∣∣f2 − f2
L

∣∣ . (S19)

This expression determines the average gap suppression for arbitrary surface scattering at all
temperatures. The procedure described here eliminates any systematic errors that might arise
from the use of literature values of the bulk frequency shift. To compare the experimental and
theory-based specular and non-specular initial slopes we can use the dependence:

IS
′diff′

slab

IS
′spec′

slab

=
IS
′diff′

∆

ISbulk
∆

, (S20)

where the superscript ’diff’ refers to any non-specular boundary condition. This dependence

holds as long as the suppressed gap
〈
∆2

A(z)
〉

= IS
′diff′

∆ (1− T/Tc).
Supplementary Fig. 7a shows the comparison between the measured values of the initial slopes

and the earlier experimental values from Refs. [18–20] in the pressure range covered in the
current experiments. Since the previous experiment with largest pressure overlap with us used
approximately 5% range below Tc0 (0.95Tc0 < T < Tc0) to determine the bulk initial slopes [18,
19], we extract the corresponding values from our “specular” measurements for direct comparison
instead of using the 10% range defined above. This eliminates the difference between systematic
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Supplementary Figure 6: Determination of initial slopes in the cavity. a, Measured
frequency shift f2 − f2

L against temperature with “specular” and “diffuse” boundary conditions
at P = 5.50 bar, showing the linear fits over the range 0.90Tc < T < Tc used to determine the
experimental initial slopes ISslab. Vertical dotted lines indicate the measured Tc. b, Calculated
spatially averaged values of the squared quasiclassical weak-coupling energy gap with specular
and diffuse boundary conditions. Linear fits over the range 0.90Tc < T < Tc are used to
determine the theory-based initial slopes IS∆. c Initial slopes ISslab as a function of
temperature range of the linear fit below measured Tc. Increased uncertainty limits and scatter
approaching Tc arise from limited amount of data combined with noise, temperature gradient
across the cavity (Supplementary Fig. 10), and potential rounding of Tc due to cavity height
distortion (Supplementary Fig. 2). d, Initial slopes IS∆ as a function of temperature range of
the linear fit below calculated Tc. We estimate the systematic error between the actual initial
slope and the slope determined over the range 0.90Tc < T < Tc to be 8%. The range chosen for
conversion between the frequency shift and the energy gap, Supplementary Eq. (S19), is
marked by vertical dashed line in c and d.
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Supplementary Figure 7: Comparison of measured initial slopes to earlier results

and theory. a, Measured IS
′spec′

slab (5% range below Tc) in cavity with “specular” boundary
condition show a linear low-pressure dependence (orange line) similar to the previous

experimental data. Blue line is a linear fit given in Ref. [21] based on ISbulk
A measured using

transverse NMR frequency shifts in bulk 3He-A at pressures below polycritical point (21.22 bar)
at high magnetic fields (blue downward-pointing triangles) [18, 19]. In Ref. [20] (red
upward-pointing triangle) the frequency shifts were measured by supercooling bulk A phase
significantly below its stable field-pressure configuration in the phase diagram. They
determined initial slopes over the range 0.90Tc0 < T < Tc0, so here we scale their data into the
5% range, using the estimated difference in the systematic errors (see Supplementary Fig. 6d).
b, Initial slopes for “diffuse” scattering normalised to measured “specular” initial slopes are

compared to quasiclassical weak-coupling theory giving IS
′diff′

∆ /ISbulk
∆ (see Supplementary

Eq. (S20)) in the range 0.90Tc < T < Tc. The data agree best with S = 0.10 curve.

errors. As expected, the measured initial slopes, IS
′spec′

slab , compare well with the values obtained

in bulk 3He-A, ISbulk
A . The linear fit given in Ref. [21] to original data from Refs. [18, 19]

is ISbulk
A =

(
0.479 + 0.109 1

barP
)
· 1010 Hz2, whereas the fit to current experiments using the

equivalent 5% range is IS
′spec′

slab =
(
0.436 + 0.131 1

barP
)
· 1010 Hz2. The earlier fit is based on data

taken up to 22 bar, so higher pressure experiments under specular confinement would be required
to see whether any significant difference persists or whether the seen difference between the fits
is due to scatter in the experimental values.

The initial slopes determined for “diffuse” boundary condition are compared to theory in
Supplementary Fig. 7b. We see that our experiments agree well with specularity S = 0.10,
further confirming that to be the best value of specularity for the boundaries with 32µmol/m2

4He preplating.
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SUPPLEMENTARY NOTE 4: Strong-coupling corrections

All calculations of energy gap ∆A in the main text are based on quasiclassical weak-coupling
theory adjusted for strong-coupling effects near Tc0. This is straightforward since the energy gap
in the G-L regime is written as [14]

∆2
A =

∆CA

CN
(πkBTc0)

2
(1− T/Tc0) , (S21)

where ∆CA refers to change in the specific heat at superfluid transition and CN is the normal
state specific heat. From this the initial slope of the gap acquires a simple form (see also
Supplementary Eq. (S18)):

ISbulk
∆ =

∆CA

CN
(πkBTc0)

2
. (S22)

Thus, the ratio between the reported pressure-dependent value of the specific-heat jump ∆CA

CN
[22]

and its weak-coupling value 1.188 can be used as a pressure-dependent correction factor for both
weak-coupling ∆2

A and ISbulk
∆ . We assume that Supplementary Eq. (S21) is also valid for non-

bulk values of the gap,
〈
∆2

A(z)
〉
, with suppressed superfluid transition temperature Tc to make

a similar trivial correction for non-specular boundary conditions, see Fig. 2c in the main text.
However, the strong-coupling effects in general depend both on temperature as well as on

pressure. For 3He-B these effects have been included in the weak-coupling-plus model [6]. The
corresponding calculations [23] extended for thermodynamic properties of bulk 3He-A (such
as the maximum energy gap ∆A) show very good agreement with our measurements under
“specular” boundary conditions, see Supplementary Fig. 8. These calculations assume the gap
to be uniform, i.e., do not take into account the nodes in the gap structure of 3He-A, but it is
to be expected that the inclusion of the nodal excitations will further improve the agreement.
Similar calculations for different surface scattering boundary conditions do not yet exist, but it is
our assessment that the low-temperature deviation between our “diffuse” measurement and the
trivially corrected weak-coupling S = 0.10 calculation visible at 5.50 bar in Fig. 2c in the main
text evidences the need for the same kind of temperature-dependent strong-coupling corrections
when the average gap is suppressed by confinement.
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dependence of strong-coupling corrections shown in Fig. 2c in the main text is also shown here
for comparison (dashed lines).
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SUPPLEMENTARY NOTE 5: Bulk marker frequency shifts and temperature gra-
dient across cavity

Helium in the bulk liquid compartments on both ends of the cavity can nucleate either into
3He-B or 3He-A at bulk superfluid transition temperature Tc0. Supercooling of the A phase is
more likely in the far-end bulk compartment which is isolated from the rest of the system via
nanofluidic cavity. The frequency shift in bulk 3He-A, which is at minimum of dipole energy, has
the same magnitude but opposite sign compared to frequency shift in the cavity, Supplementary
Eq. (S13). The bulk B-phase frequency shift is

f2
B − f2

L =
3γ2λDNF

4π2χB

∆2
B sin2 βn =

(
ΩB

2π

)2

sin2 βn, (S23)

where ΩB is the B-phase Leggett frequency, ∆B is the isotropic B-phase energy gap, χB is the
temperature-dependent B-phase spin susceptibility, and βn is the angle between H0 and spin-
orbit rotation axis n̂ [14]. The preferred orientation in bulk is such that βn = 0. However,
at vertical walls of the bulk marker compartments, dipolar energy forces βn ≈ 63.4◦ leading to
sin2 βn = 0.8 and to positive frequency shift from Larmor value detected at superfluid transitions.
Since the frequency shifts in our experiments are small compared to the Larmor frequency, we
use correspondence f2−f2

L ≈ 2fL∆f for a straightforward conversion between calculated energy
gap and frequency shift.

Examples of detected frequency shifts against temperature are presented in Supplementary
Fig. 9 and in Fig. 1b,c in the main text. The wall-determined value of B-phase frequency shift is
the dominant one in the fill-line bulk marker while the supercooled A phase dominates the far-end
bulk marker. Tracking of bulk marker frequency shifts to the lowest temperatures has not been
successful, since their amplitudes rapidly decrease below Tc0 and vanish into noise at T ≈ 0.9Tc0.
In the B phase a temperature-dependent drop in amplitude is expected due to both decreasing
value of χB and increasing value of ΩB, which together with a smooth bending of n̂ between
wall-favoured and field-favoured orientations in a macroscopic compartment results in spectral
broadening of the signal [14]. However, the detected drop is much faster than expected and
neither of these effects concerns the A phase. In the usual experiments, where the cavity signal
is of the highest interest, a field gradient along the z axis, used to separate the bulk marker
signals from the cavity signal, causes additional broadening, but this effect is independent of
temperature. Even with optimized bulk marker signal detection — after removing the field
gradient along the z axis and diminishing the cavity signal by applying a field gradient on the
xy plane — the bulk marker amplitudes drop below detection level soon below T = 0.9Tc0. The
reason for this remains unknown.

Possible temperature gradient across the cavity is seen as different measured temperatures of
the silver plate, TAg, during the superfluid transitions in the bulk volumes. These two silver-
plate temperatures are denoted by T fill

c and T far
c . After the correction for the thermal gradient

across the heat exchanger (Supplementary Note 1), T fill
c ≈ TG

c . The small measured temperature
gradient as a function of pressure and temperature hysteresis as a function of temperature sweep
rate are presented in Supplementary Fig. 10.
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supercooled A phase to the lowest temperatures at which signal is detected. Vertical dashed
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frequency shifts ∆fbulk

A (dotted lines) are converted from weak-coupling energy gap ∆A, using
Supplementary Eq. (S19) and measured “specular” initial slopes, whereas ∆fbulk

B
(dashed-dotted lines, wall-determined value, Supplementary Eq. (S23)) are directly based on
energy gap ∆B including temperature-dependent trivial strong-coupling corrections [6, 24],
using parameter library in Ref. [25]. Stars mark the easily-identifiable “specular” and “diffuse”
superfluid transitions in the cavity. b, Equivalent data at 4.25 bar.
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Supplementary Figure 10: Temperature gradient and temperature hysteresis
across the cavity. a, Temperature difference across the cavity at bulk superfluid transition
temperature Tc0, ∆Tcavity = T fill

c − T far
c . With close to specular boundary condition the

gradient across the cavity is practically zero at all pressures, whereas with solid 3He or 4He on
the surface the gradient is measured to be around 20µK. Each point represents an average of
all temperature sweeps conducted at a single pressure. The coloured bands indicate the average
value with error for each boundary condition. b, The temperature hysteresis in the cell turns
out to be insignificant as characterised by the difference between the measured bulk marker
transition temperatures as a function of temperature sweep rate. Most of the measurements
have been conducted at sweep rates less than 50µK/hour.
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SUPPLEMENTARY NOTE 6: Determination of Tc in presence of solid 3He surface
boundary layer

SUPPLEMENTARY NOTE 6.1: Sample magnetisation

With pure 3He in the sample container, localised 3He atoms next to a wall form a magnetic
surface boundary layer [26, 27]. The susceptibility of this layer has been shown to obey Curie-
Weiss law χs = C/(T − θ), where C is the Curie constant, at high temperatures T & 1 mK
with positive Weiss temperature θ, characteristic for systems with a ferromagnetic tendency [28].
The rest of the cavity is filled by liquid having a normal state 3He susceptibility χN, whether
in normal or in superfluid 3He-A state. Total magnetisation of the sample is written as M =
Ms +MFL, where Ms ∝ χs represents the magnetisation of the solid layer and MFL ∝ χN is the
liquid’s magnetisation. The Fermi liquid susceptibility is well described by the phenomenological
expression given by Dyugaev, χN ∝ 1/

√
T 2 + T ∗∗2F [29], where effective Fermi temperature T ∗∗F

is a density-dependent parameter [30–32]. In our experimental temperature range T � T ∗∗F ≈
200 − 300 mK, the liquid magnetisation is constant, thus reducing the temperature dependence
of M to result purely from the solid layer.

Temperature dependence of total magnetisation M in the cavity at two pressures is shown
in Supplementary Fig. 11a. Magnetisation is determined from Lorentzian fits to Fourier-
transformed data. Unlike in Refs. [33, 34], we do not observe line broadening as a function
of temperature possibly due to extreme smoothness of the silicon surfaces. The constant mag-
netisation of the liquid is measured independently when having 32µmol/m2 of 4He in the sample,
i.e., “diffuse” boundary condition and no evidence of temperature-dependent magnetisation since
4He atoms have replaced all the localised 3He on the walls.

Plotting the inverse of solid magnetisation against temperature, as shown in Supplementary
Fig. 11b, lets us determine the Weiss temperature as the intersection between the linear fit and
1/Ms = 0. This gives θ between 0.65 and 0.75 mK, which is consistent with earlier reported
values changing between 0.3 and 0.8 mK [26, 28, 33, 35]. Possible systematic error follows from
the shape of frequency spectra at T & 0.9Tc0 where the spectral closeness of the signals arising
from the bulk markers distorts the shape of the cavity signal, thus increasing the uncertainties
in Lorentzian fitting.

We use the ferromagnetic high-temperature series expansion (HTSE) for triangular lattice
up to 9th order in Jχ/T to fit the low-temperature values of Ms to be used in further analysis,
Supplementary Fig. 11a. The exchange coefficient is defined as Jχ = θ/3. We have used the series
expansion coefficients corresponding to Heisenberg model taking into account only two-particle
exchange as given in Ref. [36]. These agree with the coefficients found for cyclic multiple-spin-
exchange (MSE) model when only the dominant two and three-particle exchange processes (the
effective Heisenberg exchange) are considered [37]. HTSE has earlier been used to successfully
model solid 3He layer on graphite [27, 34, 38, 39]. To avoid problems due to uncertain values of
M near and above the bulk superfluid transition temperature Tc0, only the values extracted at
temperatures T . 0.9Tc0 are used in fitting. This way we find Jχ ≈ 0.15 mK which corresponds
to the reported values of θ.
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Supplementary Figure 11: Magnetisation with solid layer of 3He on the cavity
walls. a, Total magnetisation M versus temperature at two different pressures. Independently
determined liquid magnetisations MFL are shown as horizontal dash-dotted lines and bulk
superfluid transition temperatures are marked with arrows. At temperatures T & 1 mK the
magnetisations are seen to follow the Curie-Weiss law and at temperatures T . 0.9Tc0 the data
are fit using HTSE (the deviations from these fits at higher temperatures are due to systematic
errors in determination of M). Small pressure dependence of M on top of the almost constant
MFL results from the compression of the solid layer with increasing pressure [30, 35, 40]. b,
The Weiss temperature θ is defined as the abscissa of the linear fit (solid lines) to the 1/Ms

versus temperature at 1/Ms = 0. The visible kink just below Tc0, especially seen in 4.25 bar
data, results from Lorentzian fitting of three close peaks (cavity signal and two bulk marker
signals) being unreliable in determining the magnetisations of the individual features.
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SUPPLEMENTARY NOTE 6.2: Extraction of superfluid transition temperature

Due to the two-dimensional nature of the magnetic 3He surface boundary layer, the local
field of the oriented neighbouring spins results in negative frequency shift ∆fs ∝ Ms in NMR
measurements when H0 = H0ẑ is oriented normal to the surface [28, 33]. The atomic exchange
between the solid and liquid components results in a single peak in the spectrum. The amplitude,
frequency, and line shape of this composite signal depend on various factors, such as the intrinsic
magnetisations and relaxation rates of the solid and the liquid as well as their exchange rates
and the relative frequency shift [28]. The detected frequency shift of the composite peak, ∆f , is
determined as a weighted average of the intrinsic frequency shifts ∆fs and ∆fsf (superfluid) [41]:

∆f =
Ms

M
∆fs +

MFL

M
∆fsf . (S24)

In normal state we have ∆fsf = 0 and in the superfluid state its sign and magnitude depend
on the superfluid phase, whereas the solid-induced temperature-dependent shift ∆fs is present
regardless of the liquid being normal or superfluid. In the nanofluidic cavity of our sample
cell, the ratio of solid-to-liquid magnetisation is high, Ms > MFL. Thus, the solid frequency
shift dominates the overall temperature dependence, masking the straightforward detection of
superfluid transition in the cavity. Isolation of the signal arising from the solid is therefore a
necessary prerequisite for the extraction of Tc. See Supplementary Fig. 9 for measured frequency
shifts corresponding to three different scattering boundary conditions.

We adopt two methods, with consistent results, to extract the superfluid Tc in the cavity in
the presence of high background frequency shift arising from the solid 3He:
(1) Direct comparison of frequency shifts measured at different pressures. At zero pressure
the superfluidity is completely suppressed down to the lowest temperatures investigated. Thus,
the zero-pressure frequency shift is well-described by HTSE fit over the full temperature range,
and the superfluid transition at any higher pressure is identified as the temperature where the
frequency shift deviates from this zero-pressure fit. This method is presented in Supplementary
Fig. 12a,b and relies on the assumption that the solid magnetisation, and thus the resulting
frequency shift, is not dependent on pressure.
(2) Extraction of superfluid frequency shift by removing the solid effect. First, we write the
solid frequency shift as ∆fs = CsMs, where Cs is a proportionality constant. Now we get a
two-domain frequency shift by using Supplementary Eq. (S24):

∆f = Cs
(M −MFL)

2

M
, when T > Tc, (S25)

∆f = Cs
(M −MFL)

2

M
+
MFL

M
∆fsf , when T < Tc. (S26)

Thus, the frequency shift in the superfluid alone is

∆fsf =
M

MFL

(
∆f − Cs

(M −MFL)
2

M

)
. (S27)

We determine Cs from a linear fit to the the measured ∆f against (M −MFL)
2
/M in range

T . 0.9Tc0 to as low temperature as the data show linearity (at zero pressure to the lowest
temperature investigated). This can be done individually for each data set (Supplementary
Fig. 12c), or, if assuming pressure-independence, we can use the zero-bar Cs at every pressure
(Supplementary Fig. 12d).

Both methods (1) and (2) extract a clear break in the temperature dependence of the fre-
quency shift, making the determination of superfluid transition straightforward. The values of
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Tc corresponding to solid 3He boundary condition plotted in Fig. 3 in the main text are based
on method (2), using individually determined Cs. However, whichever method we use, the val-
ues coincide with each other. Due to uncertainties in determination of Ms and Cs, we do not
consider the extracted temperature dependence of the superfluid frequency shift (Supplementary
Fig. 12c,d) to be reliable. A significant improvement is possible by conducting measurements in
lower magnetic fields, which both increases the absolute value of ∆fsf and reduces the absolute
magnitude of the dipolar frequency shift ∆fs arising from the solid.



23

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
-1000

-800

-600

-400

-200

0
C

av
ity

 fr
eq

ue
nc

y 
sh

ift
, Δ

f=
f−

f L
 (H

z)
a

HTSE-like fit

0.00 bar
1.80 bar
2.46 bar
3.00 bar
4.25 bar

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
-150

-100

-50

0

50

Sh
ift

 fr
om

 b
ac

kg
ro

un
d,

 f
−
f 0

ba
r (

H
z) Raw shift from 0 bar frequency 

b

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Temperature (mK)

-500

-400

-300

-200

-100

0

100

Su
pe

rfl
ui

d 
fre

qu
en

cy
 s

hi
ft,

 Δ
f sf

 (H
z) Individual Cs

c

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Temperature (mK)

-500

-400

-300

-200

-100

0

100
Su

pe
rfl

ui
d 

fre
qu

en
cy

 s
hi

ft,
 Δ
f sf

 (H
z) Constant Cs

d

Supplementary Figure 12: Superfluid frequency shift in the cavity with solid 3He
on the walls. a, NMR frequency shifts of the cavity signal at higher pressures deviate from
the low-pressure values at certain temperatures indicating a superfluid transition in the liquid
(method (1)). Solid line is a fit to 0 bar data using high-temperature series expansion as a
model for the solid magnetisation. To compensate the small pressure dependence in Ms, the
Larmor frequency fL ≈ 967 kHz of each dataset is adjusted by less than 20 Hz to make ∆f
agree with the 0 bar HTSE fit at 0.9Tc0 of each pressure. b, The temperatures at which the
deviations occur are clearly detected when the “background” frequency shift at 0 bar is
subtracted from the data to determine Tc. c–d, The pure superfluid frequency shifts without
the solid contribution can be extracted using method (2) with individually determined Cs or
with constant zero-bar Cs as described in the text. The latter way clearly gives smaller ∆fsf .
The coloured vertical bands in b, c, and d indicate the values of Tc, with uncertainty,
determined using the method illustrated in c. It is seen that all the techniques showcased here
give a consistent result.
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SUPPLEMENTARY NOTE 7: Pair breaking at the surface

SUPPLEMENTARY NOTE 7.1: Momentum scattering

The scattering of quasiparticles from surface and the consequential pair breaking are incor-
porated into the quasiclassical theory in a form of boundary conditions for the propagator (see
also Supplementary Note. 2). An efficient way to write them is to connect the coherence am-
plitude Γ(pout)iσy on the outgoing trajectory with the incoming amplitudes γ(pin)iσy through
scattering matrix [42],

Γ(pout)iσy = S [γ(pin)iσy] S̃, (S28)

where S is the normal state scattering matrix in the particle sector and S̃ in the hole sector.
Coherence amplitudes carry the information about the structure of the order parameter, and the
difference between the asymptotic value γ(pout) and the initial scattered value Γ(pout) of coher-
ence amplitude on the outgoing trajectory can give an indication of the pair-breaking properties
of the surface. Far from the surface, the asymptotic value on any trajectory k is

γ(k) ≡ γ0 + γt(k) · σ = γ0 + γxσx + γyσy + γzσz. (S29)

Here γ0 and γt(k) = γx(k)x̂ + γy(k)ŷ + γz(k)ẑ are the singlet and triplet components in spin
space, respectively, and σ = σxx̂ + σyŷ + σz ẑ is the Pauli vector consisting of Pauli matrices
σx, σy, and σz. For unitary phases coherence amplitudes reflect symmetry of order parameter
∆(k) [8]: γ0iσy ∝ ∆0iσy and (γt(k) · σ) iσy ∝ ∆t(k) = (d(k) · σ) iσy, where d(k) is the order-
parameter vector.

Now we consider 3He-A (spin-triplet pairing) with d(k) ⊥ H0 = H0ẑ relevant to our experi-
ments [14]:

d(k) = x̂∆A(k̂x + ik̂y) ∝ | ↑↑〉+ | ↓↓〉. (S30)

For the purely momentum scattering one can employ the surface roughness averaging over in-
coming directions that leads to

Γ(pout) = |S|γ(pin) + (1− |S|)〈γ〉‖ = |S|γ(pin), (S31)

where the coherence parameter 0 ≤ |S| ≤ 1, as defined below Supplementary Eq. (S8), describes
the relative amount of quasiparticles scattering coherently (non-diffusively) between pin and pout,
and for A phase the momentum average over all in-plane directions (diffuse scattering) gives zero,
〈γ〉‖ ∝ 〈px + ipy〉‖ = 0.

The scattering is associated with a relative phase change φ on the order parameter “seen” by
the quasiparticle on the incoming and the outgoing trajectories: for skew scattering in the A
phase ∆(pout) = e−iφ∆(pin). As shown in Ref. [8], this scattering phase results in the energy
spectrum of surface-bound states: ESBS/∆A = ± cosφ/2. For purely momentum scattering
in 3He-A, φ corresponds to x-y plane rotation in momentum space. Fully specular scattering
(|S| = 1, φ = 0) generates no pair breaking and no sub-gap energy states at the surface, giving the
relation Γ(pout) = γ(pin) = γ(pout) for the coherence amplitudes. The completely backscattering
(retroreflective) surface pout = −pin with |S| = 1 and φ = π leads to largest weight of zero-energy
surface states, ESBS = 0, and gives ∆(pout) = −∆(pin) on all scattering trajectories, fulfilling
the condition of coherence amplitudes generating maximal pair breaking and suppression of Tc:
Γ(pout) = γ(pin) = −γ(pout). In purely diffuse case (|S| = 0) the scattering angle φ is fully
diffuse, i.e., evenly spread over the entire phase circle between φ = 0 and φ = 2π, resulting in
all the possible bound state energies filling up the gap uniformly. Partially diffuse scattering has
0 < |S| < 1.
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In general, the quasiparticle reflection picks up relative phase φ, responsible for bound-state
energies, from both momentum and magnetic degrees of freedom between the incoming and
outgoing trajectories. We investigate below whether the spin dependence in scattering can in-
crease the density of surface-bound states close to zero energy (φ = π) and thus result in more
than diffuse pair breaking even in the absence of partial retroreflection by the surface. For
the A phase with scattering path γ(pout) = γ(pin), maximal pair breaking will occur when
Γ(pout) = −1 · γ(pin).

SUPPLEMENTARY NOTE 7.2: Magnetic scattering from polarized surface

The magnetically active highly-polarizable solid layer of 3He on the surface can affect the spin
structure of the superfluid phase stabilised in the cavity. These effects will originate from the
spin-dependent scattering of the quasiparticles from the solid layer and should be included in the
boundary condition for the quasiclassical propagator. On the general grounds one expects that
such effects could be magnetically anisotropic and strongly depend on the spin structure of the
superfluid phase and the orientation of the magnetic field. Here we are particularly interested in
the role of magnetic scattering on the suppression of Tc.

Magnetic scattering in this formalism is included through the spin-dependent part M of the
S-matrix. This matrix has the form [43]

M =

(
e−iδ↑m

e−iδ↓m

)
= e−iϑ0e−i(m̂·σ)ϑ/2 (S32)

and it describes the phase difference ϑ = δ↑m − δ↓m that spins up and down (in m̂-basis)
acquire when they scatter off the (classically) magnetically-polarized surface. Here unit vector
m̂ refers to the polarization axis of magnetisation of the surface layer. The hole sector matrix
is obtained assuming particle-hole symmetry M̃ = M∗. The spin-dependent phase difference
can be related, for example, to the exchange coupling in the ferromagnetic layer [44], or one can
consider a possibility of Kondo-like resonant scattering that may enhance the effective exchange
interaction and produce large phase shifts [45]. However, in general the phase shift can be treated
as a model-dependent parameter.

In a basic model, where the effects of momentum and spin rotation during scattering event
can be thought to be independent of each other, the combined form of the coherence amplitude
after scattering is

Γ(pout)iσy = |S|M [γ(pin)iσy]M̃ = |S|e−i(m̂·σ)ϑ/2(γ0 + γt(pin) · σ)e−i(m̂·σ)ϑ/2(iσy)

=
[
|S|e−iσzϑ(γ0 + γzσz) + |S|(γxσx + γyσy)

]
(iσy),(S33)

where in the last step it has been taken into account that the direction of magnetisation in
the solid layer is along the external field, m̂ ‖ ẑ. One notes that, first, due to decoupled
spin and momentum spaces only the coherent part of momentum reflection from Supplementary
Eq. (S31) contributes, since the diffuse part of scattering averages the order parameter to zero
and magnetically-induced phase shifts are not affecting this average. Second, the γx and γy
components of triplet γt are not affected by magnetic scattering, meaning that | ↑↑〉 and | ↓↓〉
pairs (Sm = ±1) are not magnetically suppressed, since the spins of these pairs scatter with the
same phase. Thus, in geometry such as ours, magnetic scattering of this type does not suppress
Tc of 3He-A further from the value set by momentum scattering.

For magnetic scattering to have effect, the pairs must be in Sm = 0 state, where spins of the | ↑↓
+ ↓↑〉 pairs would scatter with different phases. The total phase accumulated by the quasiparticle
during the scattering, and thus the energy of surface-bound state, is a combination of rotation
of γz component in spin space and the difference in ∆(k) due to scattering in momentum space.
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These two can either enhance or cancel each other’s effect on pair breaking. Assuming no pair
breaking due to momentum scattering, Sm = 0 pairs would be completely broken when the γz
component is rotated by ϑ = π generating zero-energy surface-bound states, which would be the
case of resonant magnetic scattering.

The mixing of all pairs (Sm = 0,±1) in our experimental configuration becomes possible if the
direction of magnetization in the solid layer is random. The average over m̂-angles gives partial
suppression of all amplitudes at the surface:

Γ(pout)iσy = |S|
∫
dΩm̂

4π
M(m̂) [γ(pin)iσy]M̃(m̂)

=

[
|S|γ0 cosϑ+ |S|(γt(pin) · σ)

(
1− 2

3
sin2 ϑ

2

)]
(iσy). (S34)

In this case the magnetic suppression cannot take the total suppression beyond diffuse due to
non-negative coefficient for the triplet components.

The only scenario increasing pair breaking enough in this model in order to get more than dif-
fuse suppression of Tc in 3He-A, is to allow for correlated spin-orbital scattering, where backscat-
tering quasiparticles experience phase difference due to orbital part of the order parameter alone,
and the forward-scattering quasiparticles are affected by magnetic depairing. The latter part
would also require a certain orientation of magnetization in the solid layer, inconsistent with the
experimental geometry. From the physical angle, this scenario also appears to be unlikely due
to absence of plausible spin-orbital coupling mechanism in the layer.

Another way to formulate the boundary condition for the coherence amplitudes is to model the
magnetic layer by a net of polarized or unpolarized scattering centres with potential and exchange
interaction u0+JSimp ·σ with a classical magnetic moment Simp of the centres (“impurities”) and
liquid-solid exchange coupling coefficient J . These act to randomize the directions of scattered
quasiparticles, but introduce in general different relaxation times for quasiparticles of different
spins. In this modification of Ovchinnikov-Kopnin model of thin dirty layer [46, 47] with thickness
d, one again encounters vanishing diffuse average over directions 〈γ〉‖ = 0 that does not further
contribute to the magnetic pair breaking. The coherent scattering part is given by spin-dependent
relaxation lengths `, e.g., Γ(pout) = γ(pin)e−2d/` with vF/`± = 2πnimpNF(u0 ± JSimp)2 for

Sz = ±1 pairs, or vF/`0 = 2πnimpNF(u2
0 + (JSimp)2) for Sz = 0 pairs, where nimp is the density

of scattering centres in the magnetic layer. These expressions are consistent with previous work
on bulk systems in aerogel, and they may lead to effects such as A1-A2 phase splitting [48], but
will not result in an excess of zero-energy states because e−2d/` coefficients are all positive. The
maximal allowed pair breaking is diffuse, |S| = 0, in the limit d � ` with no magnetic effects
discernible.

SUPPLEMENTARY NOTE 7.3: Quantum spin scattering

We propose to extend the boundary conditions to take into account the quantum interference
of spin states of the (identical) solid and liquid 3He atoms. They will include spin-flip processes
and more subtle scattering effects that are missing in the classical magnetic moment approaches.
A rough model for the scattering of a liquid 3He quasiparticle in the solid layer of thickness a is
given by the Hamiltonian in the solid layer

H = − ~2

2m
∇2 + U0 + J Ŝs · ~

2
σ, (S35)

where U0 is the potential height of the barrier, Ŝs is the ~/2 spin operator of solid layer atom,
and ~

2σ is the spin operator of liquid quasiparticle. Below the layer, we set up an impenetrable
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Supplementary Figure 13: Suppression of Tc by magnetic scattering on quantum
spins. The momentum scattering is taken to be fully specular, reducing the suppression to be
purely from magnetic origin. Dashed lines show the calculated suppression of Tc corresponding
to different effective specularities −1 ≤ Seff ≤ 1. Magnetic scattering, Supplementary
Eq. (S44), is parametrized by four scattering phases, αs,t, α̃s,t, in singlet and triplet channels
for both particles and holes. The values for these depend on microscopic model of the magnetic
layer. Symbols show the resulting suppression corresponding to a set of chosen layer
parameters, assuming the orders of magnitude k ∼ kF ∼ 10 nm−1 and a ∼ 1 nm and no scalar
potential in the layer, u0 = 0. We also neglect the dependence of the scattering phases on
momentum perpendicular to the wall. The resulting curves can model the suppression over the
full range of effective specularity.

wall so that all particles are reflected back. The total spin of the quasiparticle and the solid atom
participating in scattering can be in the singlet or triplet state, Stot = 0, 1, with the standard
eigenvalues for the product 〈Ŝs · ~2σ〉 = − 3

4~
2, + 1

4~
2. The scattering matrix e−ikz → −eiαeikz is

(omitting overall −1 factor)

M =


eiαt

eiαs

eiαt

eiαt

 in total spin basis

Stot = 1, m = +1
Stot = 0, m = 0
Stot = 1, m = 0
Stot = 1, m = −1

 , (S36)

where the phases of the singlet and triplet scattering channels are given by

tan
αs
2

=
tan

(
ka
√

1− u0 + 3
4j0

)
√

1− u0 + 3
4j0

, tan
αt
2

=
tan

(
ka
√

1− u0 − 1
4j0

)
√

1− u0 − 1
4j0

(S37)

with definitions

u0 =
2mU0

~2k2
, j0 =

2mJ

k2
. (S38)
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We transform to the basis labelled by z-projections of liquid (σ, σ′) and solid (Ssz , S
s′

z ) spins
before and after the scattering event using Clebsch-Gordan matrix C,

|σ, Ssz〉 =


+1/2,+ 1

2
+1/2,− 1

2
−1/2,+ 1

2
−1/2,− 1

2

 = C−1

Stot = 1, m = +1
Stot = 0, m = 0
Stot = 1, m = 0
Stot = 1, m = −1

 , C =


1

1√
2
− 1√

2
1√
2

1√
2

1

 , (S39)

to get the scattering matrix

Mσ,σ′⊗Ssz ,Ss
′
z

= C−1


eiαt

eiαs

eiαt

eiαt

 C

= eiα+/2


e−iα−/2

cos α−2 −i sin α−
2

−i sin α−
2 cos α−2

e−iα−/2

∣∣∣
α±=αs±αt

. (S40)

The separate 2× 2 blocks correspond to (σ, σ′) space; within each block we have 2× 2 (Ssz , S
s′

z )
space. One gets similar expression for the hole sector:

M̃σ,σ′⊗Ssz ,Ss
′
z

= (−iσy)C−1


eiα̃t

eiα̃s

eiα̃t

eiα̃t

 C(iσy) . (S41)

Here (iσy)-factors act on liquid spin variables, and the scattering phases

tan
α̃s
2

= −
tan

(
ka
√

1− u0 − 3
4j0

)
√

1− u0 − 3
4j0

, tan
α̃t
2

= −
tan

(
ka
√

1− u0 + 1
4j0

)
√

1− u0 + 1
4j0

(S42)

do not show the particle-hole symmetry, which was present in the scattering on a classical spin,
due to difference between singlet and triplet factors −3/4,+1/4. (In large-spin or particle-hole-
symmetric case, we would have α̃s = −αt, α̃t = −αs.)

By taking average of solid spin configurations, we obtain the boundary condition for the
coherence amplitudes:

Γαβ(pout) =
∑

Ssz=± 1
2

P(Ssz) 〈Ssz |Mα,σ⊗Ssz ,Ss
′
z
γσσ′(pin) M̃σ′,β⊗Ss′z ,Ssz

|Ssz〉 . (S43)

In the assumption of unpolarized solid layer, P(+ 1
2 ) = P(− 1

2 ) = 1/2 (i.e., the NMR field is not
strong enough to orient significant fraction of the spins), the triplet components upon scattering
from the magnetic layer are multiplied by an additional factor:

Γx,y,z(pout) = Qsf |S| γx,y,z(pin)

Qsf = ei(α++α̃+)/2 1

2

(
e−iα−/2 cos

α̃−
2

+ e−iα̃−/2 cos
α−
2

)
=

1

4

(
ei(αs+α̃t) + ei(α̃s+αt) + 2ei(αt+α̃t)

)
.

(S44)
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Complex magnetic pair-breaking parameter Qsf is a mixture of singlet and triplet channel scat-
tering phases of both particles and holes. It can easily become negative, depending on the specific
values of the phases in Supplementary Eqs. (S37) and (S42) which in this model are functions of
solid layer parameters ka and j0 defined in Supplementary Eq. (S38). We assume partially spec-
ular momentum scattering with less than diffuse Tc suppression. In this situation the largest in-
crease in the density of zero-energy surface-bound states arises when αs+α̃t ∼ π, α̃s+αt ∼ π, and
αt+α̃t ∼ π, so that the real part <Qsf = (cos(αs + α̃t) + cos(α̃s + αt) + 2 cos(αt + α̃t)) /4 ∼ −1.
Further adjustment of the parameters can lead to total Tc suppression corresponding to any value
of effective specularity −|S| ≤ Seff ≤ |S|. Thus, the suppression of Tc can be more than diffuse
even for fully specular momentum scattering |S| = 1, in which case the magnetic pair breaking
alone covers the full range of suppressions matching the effective specularity from specular to
retroreflective (Supplementary Fig. 13).

In order to get Tc suppression matching effective specularity Seff = −0.4, as detected with
solid 3He surface boundary layer (see Fig. 3a in the main text), the underlying specularity of
momentum scattering needs to be S ≥ 0.4. This can in principle be possible if the atomically
smooth silicon surfaces of the cavity [1] are not significantly roughened by solid 3He layer, and
if atomic-level roughness of the solid substrate itself can promote specular scattering.

The three mechanisms capable of producing Tc suppression more than diffuse, as discussed
here, are all illustrated in Fig. 3b in the main text.
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